Scattering di elettroni e neutrini su nuclei ed effetti di stranezza

Andrea Meucci Carlotta Giusti Franco Davide Pacati

Dipartimento di Fisica Nucleare e Teorica, Università di Pavia INFN, sezione di Pavia

Andrea@Cortona2006

Introduzione

- contributo dei quark del mare alle proprietà del nucleone
- dati di EMC (1988) \longrightarrow prima evidenza che $g_{\rm A}^{\rm s} \neq 0$
- combinazione di diverse misure è necessaria per un'informazione completa
- sensibilità del PVES dello scattering *v*-nucleo al contributo di stranezza
- effetti nucleari sotto controllo

PV electron scattering

 $\vec{e} + p \longrightarrow e + p$ $\vec{e} + A \longrightarrow e + A$

- determinare il contributo di stranezza ai fattori di forma elettrico, magnetico ed assiale del nucleone
- □ si suppone che il modello standard sia valido
- \square misure fatte solo per scattering elastico \vec{ep}
- <u>e per i nuclei?</u> proposal)
 ²H, ⁴He (HAPPEX), ²⁰⁸Pb (PREX – livello proposal)
- effetti nucleari sotto controllo

PV risultati

$$A = \frac{d\sigma_+ - d\sigma_-}{d\sigma_+ + d\sigma_-}$$

A dipende da $G^{\gamma}_{\mathrm{E(M)}},\,G^{Z}_{\mathrm{E(M)}}$ e G_{A}

- \square misure per il contributo strano a $G_{\rm E} \in G_{\rm M}$. Complicazioni per $G_{\rm A}$
- $\square HAPPEX-1 (ep, Q^2=0.48 GeV^2) G_E^s + 0.392 G_M^s = 0.014 \pm 0.020 \pm 0.010$ $\square HAPPEX-2 (ep, Q^2=0.1 GeV^2) G_E^s + 0.080 G_M^s = 0.030 \pm 0.025 \pm 0.006 \pm 0.012$
- **A4** (*ep*, $Q^2 = 0.108 \text{GeV}^2$) $G_{\text{E}}^{\text{s}} + 0.106 G_{\text{M}}^{\text{s}} = 0.071 \pm 0.036$

PV su nuclei

$$d\sigma \propto |\mathcal{M}^{\gamma} + \mathcal{M}^{Z}|^{2} \simeq |\mathcal{M}^{\gamma}|^{2} + (\mathcal{M}^{\gamma})^{\star} \mathcal{M}^{Z} + (\mathcal{M}^{Z})^{\star} \mathcal{M}^{\gamma}$$
$$A = \frac{d\sigma_{+} - d\sigma_{-}}{d\sigma_{+} + d\sigma_{-}} = A_{0} \frac{v_{\mathrm{L}} R_{\mathrm{L}}^{\mathrm{AV}} + v_{\mathrm{T}} R_{\mathrm{T}}^{\mathrm{AV}} + v_{\mathrm{T}}' R_{\mathrm{T}}^{\mathrm{VA}}}{v_{\mathrm{L}} R_{\mathrm{L}} + v_{\mathrm{T}} R_{\mathrm{T}}}$$

correnti elettromagnetica e neutra

$$j_{\rm em}^{\mu} = F_1(Q^2)\gamma^{\mu} + i\frac{\kappa}{2M}F_2(Q^2)\sigma^{\mu\nu}q_{\nu}$$

$$j_{\rm nc}^{\mu} = F_1^{\rm V}(Q^2)\gamma^{\mu} + i\frac{\kappa}{2M}F_2^{\rm V}(Q^2)\sigma^{\mu\nu}q_{\nu} - G_{\rm A}(Q^2)\gamma^{\mu}\gamma^5$$

fattori di forma

$$F_i^{\rm V,p(n)} = (1/2 - 2\sin^2\theta_{\rm W}) F_i^{\rm p(n)} - 1/2F_i^{\rm n(p)} - 1/2F_i^{\rm s}$$
$$[\sin^2\theta_{\rm W} \simeq 0.23]$$

PV asymmetry

□ ${}^{12}C \longrightarrow q = 400 \text{ MeV}/c$ □ ${}^{16}O \longrightarrow \varepsilon = 1200 \text{ MeV} \text{ e}$ $\vartheta = 32^{\circ}$ □ stati legati e potenziali diversi

A. Meucci, C. Giusti, F.D. Pacati, Nucl. Phys. A 756 (2005) 359-381

PV asymmetry

□ ¹²C $(q = 500 \text{ MeV}/c \text{ e } \vartheta = 30^{\circ})$ □ poca sensibilità a g_{A}^{s}

A. Meucci, C. Giusti, F.D. Pacati, Nucl. Phys. A 756 (2005) 359-381

Andrea@Cortona2006

Scattering neutrino-nucleo

scattering semi-inclusivo

 $\nu(\bar{\nu}) + A \longrightarrow \mu^{-}(\mu^{+}) + N + (A - 1)$ $\nu_{\mu}(\bar{\nu}_{\mu}) + A \longrightarrow \nu_{\mu}(\bar{\nu}_{\mu}) + N + (A - 1)$

$$d\sigma = \frac{G_{\rm F}^2}{2} \ 2\pi \ L^{\mu\nu} \ W_{\mu\nu} \ \frac{d^3k}{(2\pi)^3} \ \frac{d^3p_{\rm N}}{(2\pi)^3}$$

 $G_{\rm F} \simeq 1.16639 \times 10^{-11} \text{ MeV}^{-2} \text{ costante di Fermi}$ $(\times \cos^2 \vartheta_{\rm C} \simeq 0.9749 \text{ per reazioni CC})$

tensore adronico

$$W^{\mu\nu}(\omega,q) = \sum_{n} \langle n; \chi_{\boldsymbol{p}_{\mathrm{N}}}^{(-)} \mid J^{\mu}(\boldsymbol{q}) \mid \Psi_{0} \rangle \langle \Psi_{0} \mid J^{\nu\dagger}(\boldsymbol{q}) \mid n; \chi_{\boldsymbol{p}_{\mathrm{N}}}^{(-)} \rangle$$
$$\times \quad \delta(E_{0} + \omega - E_{\mathrm{f}}), \qquad \langle \chi_{\boldsymbol{p}_{\mathrm{N}}}^{(-)} \mid j^{\mu}(\boldsymbol{q}) \mid \varphi_{n} \rangle$$

si calcola come nel caso (e,e'p)

Sezione d'urto neutrino-nucleo

$$\frac{d\sigma}{d\varepsilon d\Omega dT_{\rm N}} = \frac{G^2}{4\pi^2} k\varepsilon \Big[v_0 R_{00} + v_{zz} R_{zz} - v_{0z} R_{0z} + v_T R_T \pm v_{xy} R_{xy} \Big] \frac{|\mathbf{p}_{\rm N}| E_{\rm N}}{(2\pi)^3} \left(\begin{array}{c} 1 \quad ({\rm NC}) \\ \cos^2 \vartheta_{\rm C} \quad ({\rm CC}) \end{array} \right)$$

componenti del tensore leptonico $\longrightarrow v_{\lambda\lambda}$

funzioni di risposta

$$R_{00} = \int d\Omega_{\rm N} W^{00} , R_{zz} = \int d\Omega_{\rm N} W^{zz} ,$$

$$R_{0z} = \int d\Omega_{\rm N} 2 \operatorname{Re}(W^{0z}) ,$$

$$R_{T} = \int d\Omega_{\rm N} (W^{xx} + W^{yy}) , R_{xy} = \int d\Omega_{\rm N} 2 \operatorname{Im}(W^{xy})$$

Corrente debole

corrente carica

$$j^{\mu} = \begin{bmatrix} F_{1}^{V}(Q^{2})\gamma^{\mu} + i\frac{\kappa}{2M}F_{2}^{V}(Q^{2})\sigma^{\mu\nu}q_{\nu} - G_{A}(Q^{2})\gamma^{\mu}\gamma^{5} + F_{P}(Q^{2})q^{\mu}\gamma^{5} \end{bmatrix}\tau^{\pm}$$
$$F_{i}^{V} = F_{i}^{P} - F_{i}^{n} \qquad \begin{array}{c} \text{fattore di forma} \\ \text{assiale} \\ M_{A} = (1.026 \pm 0.021)\text{GeV} \\ \end{array}$$

corrente neutra

$$\begin{aligned} j^{\mu} &= F_{1}^{V}(Q^{2})\gamma^{\mu} + i\frac{\kappa}{2M}F_{2}^{V}(Q^{2})\sigma^{\mu\nu}q_{\nu} - G_{A}(Q^{2})\gamma^{\mu}\gamma^{5} \\ F_{i}^{V,p(n)} &= \left(1/2 - 2\sin^{2}\theta_{W}\right)F_{i}^{p(n)} - 1/2F_{i}^{n(p)} - 1/2F_{i}^{s}\left[\sin^{2}\theta_{W}\simeq 0.23\right] \\ F_{1}^{s}(Q^{2}) &= \frac{(\rho^{s} + \mu^{s})\tau}{(1 + \tau)(1 + Q^{2}/M_{V}^{2})^{2}} , \ F_{2}^{s}(Q^{2}) &= \frac{(\mu^{s} - \tau\rho^{s})}{(1 + \tau)(1 + Q^{2}/M_{V}^{2})^{2}} \\ F_{1}^{s}(Q^{2}) &= \frac{(\rho^{s} + \mu^{s})\tau}{(1 + \tau)(1 + Q^{2}/M_{V}^{2})^{2}} , \ F_{2}^{s}(Q^{2}) &= \frac{(\mu^{s} - \tau\rho^{s})}{(1 + \tau)(1 + Q^{2}/M_{V}^{2})^{2}} \\ F_{1}^{s}(Q^{2}) &= \frac{(\rho^{s} + \mu^{s})\tau}{(1 + \tau)(1 + Q^{2}/M_{V}^{2})^{2}} , \ F_{2}^{s}(Q^{2}) &= \frac{(\mu^{s} - \tau\rho^{s})}{(1 + \tau)(1 + Q^{2}/M_{V}^{2})^{2}} \\ F_{1}^{s}(Q^{2}) &= \frac{(\rho^{s} + \mu^{s})\tau}{(1 + \tau)(1 + Q^{2}/M_{V}^{2})^{2}} , \ F_{2}^{s}(Q^{2}) &= \frac{(\mu^{s} - \tau\rho^{s})}{(1 + \tau)(1 + Q^{2}/M_{V}^{2})^{2}} \\ F_{1}^{s}(Q^{2}) &= \frac{(\rho^{s} + \mu^{s})\tau}{(1 + \tau)(1 + Q^{2}/M_{V}^{2})^{2}} , \ F_{2}^{s}(Q^{2}) &= \frac{(\mu^{s} - \tau\rho^{s})}{(1 + \tau)(1 + Q^{2}/M_{V}^{2})^{2}} \\ F_{1}^{s}(Q^{2}) &= \frac{(\rho^{s} + \mu^{s})\tau}{(1 + \tau)(1 + Q^{2}/M_{V}^{2})^{2}} , \ F_{2}^{s}(Q^{2}) &= \frac{(\mu^{s} - \tau\rho^{s})}{(1 + \tau)(1 + Q^{2}/M_{V}^{2})^{2}} \\ F_{1}^{s}(Q^{2}) &= \frac{(\rho^{s} + \mu^{s})\tau}{(1 + \tau)(1 + Q^{2}/M_{V}^{2})^{2}} , \ F_{2}^{s}(Q^{2}) &= \frac{(\rho^{s} + \mu^{s})\tau}{(1 + \tau)(1 + Q^{2}/M_{V}^{2})^{2}} \\ F_{1}^{s}(Q^{2}) &= \frac{(\rho^{s} + \mu^{s})\tau}{(1 + \tau)(1 + Q^{2}/M_{V}^{2})^{2}} , \ F_{2}^{s}(Q^{2}) &= \frac{(\rho^{s} + \mu^{s})\tau}{(1 + \tau)(1 + Q^{2}/M_{V}^{2})^{2}} \\ F_{1}^{s}(Q^{2}) &= \frac{(\rho^{s} + \mu^{s})\tau}{(1 + \tau)(1 + Q^{2}/M_{V}^{2})^{2}} \\ F_{2}^{s}(Q^{2}) &= \frac{(\rho^{s} + \mu^{s})\tau}{(1 + \tau)(1 + Q^{2}/M_{V}^{2})^{2}} \\ F_{2}^{s}(Q^{2}) &= \frac{(\rho^{s} + \mu^{s})\tau}{(1 + \tau)(1 + Q^{2}/M_{V}^{2})^{2}} \\ F_{2}^{s}(Q^{2}) &= \frac{(\rho^{s} + \mu^{s})\tau}{(1 + \tau)(1 + Q^{2}/M_{V}^{2})^{2}} \\ F_{2}^{s}(Q^{2}) &= \frac{(\rho^{s} + \mu^{s})\tau}{(1 + \tau)(1 + Q^{2}/M_{V}^{2})^{2}} \\ F_{2}^{s}(Q^{2}) &= \frac{(\rho^{s} + \mu^{s})\tau}{(1 + \tau)(1 + Q^{2}/M_{V}^{2})^{2}} \\ F_{2}^{s}(Q^{2}) &= \frac{(\rho^{s} + \mu^{s})\tau}{(1 + \tau)(1 + Q^{2}/M_{V}^{2})^{2}} \\ F_{2}^{s}(Q^{2}) &= \frac{(\rho^{s} + \mu^{s})\tau}{(1 + \tau)(1 + Q^{2}/M_{V}^{2})^{2}}$$

Sezione d'urto

¹²C($\nu_{\mu}, \mu^{-}p$) e ¹²C($\bar{\nu}_{\mu}, \mu^{+}n$) ¹²C($\nu, \nu'p$) e ¹²C($\bar{\nu}, \bar{\nu}'p$)

corrente carica

A. Meucci, C. Giusti, F.D. Pacati, Nucl. Phys. A 773 (2006) 250-262

Andrea@Cortona2006

Effetto della stranezza sulla sezione d'urto NC

Quantità utili per studiare la stanezza

Neutrino/antineutrino

dashed no stranezza

$$\square$$
 solid $g_{
m A}^{
m s}=-0.10$

dot-dashed $g_{\rm A}^{\rm s} = -0.10 \,{\rm e}\,\mu^{\rm s} = -0.50$

dotted
$$g_{\rm A}^{\rm s} = -0.10 \ {\rm e} \ \rho^{\rm s} = +2.0$$

A. Meucci, C. Giusti, F.D. Pacati, Nucl. Phys. A 773 (2006) 250-262

Rapporto p/n

Rapporto NC/CC

$$lacksquare$$
 solid $g_{
m A}^{
m s}=-0.10$

dot-dashed
$$g_{\rm A}^{\rm s} = -0.10 \, {\rm e} \, \mu^{\rm s} = -0.50 \, {\rm g}^{\rm s}$$

dotted
$$g_{\rm A}^{\rm s} = -0.10 \ {\rm e} \ \rho^{\rm s} = +2.0$$

A. Meucci, C. Giusti, F.D. Pacati, Nucl. Phys. A 773 (2006) 250-262

Asimmetria

$$lacksquare$$
 solid $g_{
m A}^{
m s}=-0.10$

dot-dashed
$$g_{\rm A}^{\rm s} = -0.10 \, {\rm e} \, \mu^{\rm s} = -0.50 \, {\rm e}$$

$$\square$$
 dotted $g_{\mathrm{A}}^{\mathrm{s}} = -0.10 \mathrm{~e~}
ho^{\mathrm{s}} = +2.0$

A. Meucci, C. Giusti, F.D. Pacati, Nucl. Phys. A 773 (2006) 250-262

Esperimenti con i neutrini

- □ BNL E734 @ Brookhaven → scattering $\nu p \in \overline{\nu}p$ nel range $0.45 \le Q^2 \le 1.05 (\text{GeV}/c)^2$ → ha suscitato molto interesse ma precisione e sensibilità limitate impediscono di trarre conclusioni certe
- \square FINeSSE @ FermiLab \longrightarrow $E_{\nu} = 500 1000 \text{MeV}$
- parte del programma BooNE (oscillazioni di neutrino)
- \square misura di $R_{\rm NC/CC}$ ed estrazione di $g_{\rm A}^{\rm s}$ nel range $0.25 \leq Q^2 \leq 0.75 ~({\rm GeV}/c)^2$
- $\Box \quad \text{fascio di} \quad \nu \in \bar{\nu}$

Determinazione dei fattori di forma strani

□ 2 soluzioni per i fattori di forma strani a $Q^2 = 0.5 \text{ GeV}^2$ ottenute dai dati di E734 ($\nu p \in \overline{\nu}p$) e HAPPEX-1 ($\vec{e}p$)

Favorita la soluzione 1 anche se		soluzione 1	soluzione 2
$G_{\rm E}^{\rm s}$ e $G_{\rm M}^{\rm s}$ sono compatibili con 0	$G_{\rm E}^{\rm s}$	0.02 ± 0.09	0.37 ± 0.04
S Data	$G_{\mathrm{M}}^{\tilde{\mathrm{s}}}$	0.00 ± 0.21	-0.87 ± 0.11
Phys. Rev. Lett. 92 (2004) 082002	$G_{\mathrm{A}}^{\mathrm{s}}$	-0.09 ± 0.05	0.28 ± 0.10

Determinazione dei fattori di forma strani

- se usiamo anche i dati di GO(\vec{ep}) → indicazione circa l'andamento di $G_{\rm E}^{\rm s}, G_{\rm M}^{\rm s} \in G_{\rm A}^{\rm s}$ nel range $0.45 \le Q^2 \le 1.05 \ {\rm GeV}^2$
- □ incertezza tipica dell'ordine del 20-25% a causa dei dati di(vp e vp)
- esperimento FINeSSE
 - S. Pate, et al., hep-ex/0512032

