lattice thermodynamics, quasiparticles and Polyakov loop

Claudia Ratti ECT*, Villazzano (Trento) Italy

and INFN, Gruppo Collegato di Trento, Povo (Trento) Italy

In collaboration with Simon Rößner, Michael A. Thaler and Wolfram Weise

Introduction

- QCD has a rich phase structure
- Many challenging items:
 - order of the phase transition
 - critical point
 - deconfinement and chiral symmetry
 - \rightarrow colour superconductivity at high μ

- Status of lattice QCD thermodynamics:
 - data available in pure gauge sector
 - \rightarrow quarks easily introduced at $\mu = 0$
 - \rightarrow first lattice data at small μ .

- Taylor expansion method
 - ightarrow power series of operators in μ/T
 - \rightarrow expansion coefficients at $\mu/T=0$
 - \rightarrow data up to sixth order in μ/T .

Purpose of our work

✤ MODEL FORMULATION

- improve NJL model by including Polyakov loop dynamics
- Polyakov loop dynamics fixed by comparison with pure gauge QCD.
- parameter fixing in hadronic and pure gauge sectors

Purpose of our work

MODEL FORMULATION

- improve NJL model by including Polyakov loop dynamics
- Polyakov loop dynamics fixed by comparison with pure gauge QCD.
- parameter fixing in hadronic and pure gauge sectors

- TESTS OF THE MODEL
 - model PREDICTIONS vs lattice results at zero and finite μ :
 - Taylor expansion coefficients at $\mu/T = 0.$
 - coherent comparison of Taylorexpanded observables vs lattice results

Purpose of our work

MODEL FORMULATION

- improve NJL model by including Polyakov loop dynamics
- Polyakov loop dynamics fixed by comparison with pure gauge QCD.
- parameter fixing in hadronic and pure gauge sectors

TESTS OF THE MODEL

- model PREDICTIONS vs lattice results at zero and finite μ :
- Taylor expansion coefficients at $\mu/T = 0.$
- coherent comparison of Taylorexpanded observables vs lattice results

• MODEL PREDICTIONS AT HIGH μ

- test the validity of the Taylor expansion by comparing the full result and the truncated one for different observables;
- phase diagram and quark mass dependence
- position of critical point and quark mass dependence.

P. Meisinger and M. Ogilvie (1996)- K. Fukushima (2004)

PNJL (Polyakov loop extended NJL) model

Starting point: NJL model in temporal background gauge field

$$\mathcal{L}_{PNJL} = \bar{\psi} \left(i \gamma_{\mu} D^{\mu} - \hat{m}_0 \right) \psi + \frac{G}{2} \left[\left(\bar{\psi} \psi \right)^2 + \left(\bar{\psi} i \gamma_5 \vec{\tau} \psi \right)^2 \right] - V \left(\Phi, T \right),$$

where:

$$D_{\mu} = \partial_{\mu} - igA_{\mu}$$
 and $A_{\mu} = \delta_{\mu 0}A_0$.

Coupling between Polyakov loop and quarks uniquely determined by covariant derivative D_{μ} . We recall that:

$$\Phi(x) = \frac{1}{N_c} \operatorname{Tr} \left[\mathcal{P} \exp\left(i \int_0^\beta A_4(x,\tau) \, d\tau\right) \right] = \frac{1}{3} \operatorname{Tr} \exp\left[\frac{i A_4^a \lambda_a}{T}\right]$$
Parameters
Physical quantitie

Parameters		
Λ [GeV]	0.651	
G [GeV $^{-2}$	²] 10.078	
m_0 [MeV	[] 5.5	

Physical quantities		
f_{π} [MeV]	92.4	
$ \langle ar{\psi}\psi angle ^{1/3}$ [MeV]	247	
m_{π} [MeV]	139.3	

Polyakov loop potential

• The Polyakov loop is the order parameter related to the $Z(N_c)$ symmetry

$$\frac{V(\Phi,T)}{T^4} = -\frac{b_2(T)}{2}\Phi^*\Phi - b_4\left(\frac{T_0}{T}\right)^3\ln[1 - 6\Phi^*\Phi + 4\left(\Phi^{*3} + \Phi^3\right) - 3\left(\Phi^*\Phi\right)^2]$$

with

7

Fit to Pure Gauge QCD lattice data

- Minimization of $V(\Phi, T)$: Polyakov loop behaviour as a function of T
- Comparison with lattice data from
 Kaczmarek *et al.* PLB 543 (2002)

p(*T*) = −*V*(Φ(*T*), *T*)
 s(*T*) = dp/dT = −dV(Φ(*T*),*T*)/dT
 ϵ(*T*) = T dp/dT − *p* = *Ts*(*T*) − *p*(*T*)
 Comparison with lattice data from

Boyd et al. NPB 469 (1996)

PNJL model at finite temperature and quark chemical potential

1-quark (antiquark) states, suppressed below
$$T_c$$

$$2-quark (antiquark) states, suppressed below T_c

$$\Omega(T, \mu, \sigma, \Phi) = V(\Phi, T) + \frac{\sigma^2}{2G}$$

$$-2N_f \int \frac{d^3 p}{(2\pi)^3} \left\{ 3E_p + T \ln \left[1 + 3\Phi e^{-(E_p - \mu)/T} + 3\Phi e^{-2(E_p - \mu)/T} + e^{-3(E_p - \mu)/T} \right] \right]$$

$$+ \ln \left[1 + 3\Phi^* e^{-(E_p + \mu)/T} + 3\Phi e^{-2(E_p + \mu)/T} + e^{-3(E_p + \mu)/T} \right] \right]$$

$$3-quark (antiquark) states, not suppressed even below T_c
with $E_p = \sqrt{\vec{p}^2 + m^2}$ and $m = m_0 - \langle \sigma \rangle = m_0 - 2G \langle \bar{\psi} \psi \rangle$ is the constituent quark mass.
High temperature limit: $\Phi \rightarrow 1$, $\Phi^* \rightarrow 1$: we re-obtain the standard NJL formula:
$$\ln \left[1 + 3\Phi e^{-(E_p - \mu)/T} + 3\Phi^* e^{-2(E_p - \mu)/T} + e^{-3(E_p - \mu)/T} \right]$$

$$\downarrow T \rightarrow \infty$$

$$\ln \left[1 + e^{-(E_p - \mu)/T} \right]^3 = 3 \ln \left[1 + e^{-(E_p - \mu)/T} \right]$$$$$$

$\mu = 0$ predictions

C.R., S. Rößner, M. A. Thaler and W. Weise, hep-ph/0609218, to appear in EPJC. C.R., S. Rößner and W. Weise, hep-ph/0609281. Lattice data from Allton *et al. (2005)*.

Finite μ PREDICTIONS: pressure

C.R., S. Rößner, M. A. Thaler and W. Weise, hep-ph/0609218, to appear in EPJC. Lattice data from Allton *et al. (2005)*.

Claudia Ratti

Finite μ PREDICTIONS: quark number density

$$\frac{n_q(T,\mu)}{T^3} = \frac{\partial \left(p/T^4\right)}{\partial \left(\mu_q/T\right)} = 2c_2\frac{\mu_q}{T} + 4c_4\left(\frac{\mu_q}{T}\right)^3 + 6c_6\left(\frac{\mu_q}{T}\right)^5$$

C.R., S. Rößner, M. A. Thaler and W. Weise, hep-ph/0609218, to appear in EPJC. Lattice data from Allton *et al. (2005)*.

Comparison between Taylor-expanded and full results

C.R., S. Rößner, M. A. Thaler and W. Weise, hep-ph/0609218, to appear in EPJC.

Quark number susceptibility at finite μ : First order phase transition?

$$\frac{\chi_q (T, \mu)}{T^2} = \frac{\partial \left(n_q / T^3 \right)}{\partial \left(\mu_q / T \right)} = 2 c_2 + 12 c_4 \left(\frac{\mu_q}{T} \right)^2 + 30 c_6 \left(\frac{\mu_q}{T} \right)^4$$

C.R., S. Rößner, W. Weise, hep-ph/0609281. Lattice data from Allton *et al. (2005)*. Therm. fit data from Andronic *et al.* (2005).

Mesonic properties in the PNJL model

H. Hansen, W. M. Alberico, A. Beraudo, A. Molinari, M. Nardi, C. R., hep-ph/0609116.

Conclusions

- The standard NJL model fails in reproducing QCD thermodynamics
- PNJL model as a minimal synthesis of confinement and chiral symmetry breaking
- A description of QCD thermodynamics with our simple model works very well
- Taylor series converging very quickly at relatively small chemical potentials
- Discrepancy between truncated and full results observed at larger chemical potentials
 - Quark number susceptibilities

Outlook

- Exploration of the thermodynamics and phase diagram for $N_f = 2 + 1$ and $N_f = 3$
- Improvement of approximation: going beyond mean field approximation