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Very massive compact stars?

PSR J1614-2230 mass M ~ 2 Mo Demorest et al Nature 467, (2010) 1081
Tension with quark matter models Bombaci et al. Phys. Rev. C 85, (2012) 55807
Unlikely that one single model can explain everything, see for example Drago et al. arXiv:1309.7263
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Superfluid
Broken global symmetry

Transport of the quantum numbers

Goldstone theorem mmmep  of the broken group with almost no
dissipation
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Superconductor
Broken gauge symmetry
, , Broken gauge fields with mass, M,
Frggs itedhanon 3 penetrate for a length A\ oc 1/M
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Increasing the attractive interaction between fermions



THAT'S IT?
BCS AND BEC

THESE ARE THE ONLY TWO
SUPERFLUID PHASE?
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Can a superfluid be solid? Can solids become superfluid?
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The naive answer seems NO WAY! (Penrose and Onsager, 1956)

Long range order spontaneously produced
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Frictionless motion
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Can a superfluid be solid? Can solids become superfluid?

The naive answer seems NO WAY! (Penrose and Onsager, 1956)

Long range order spontaneously produced

Solid
/ i { Difficult to deform (shear modulus)
Supersolid

Hichly delocalized system
\ Superfluid { S o
Frictionless motion

It seems helium cannot become a supersolid. Rev. Mod. Phys. 84, 759 (2012) and
Supersolid with ultracold trapped atoms? arXiv:1110.1323v2 [cond-mat.quant-gas]



http://arxiv.org/abs/1110.1323v2
http://arxiv.org/abs/1110.1323v2

Main concepts so far:

® We don’t know what is inside compact stars. It might be that some superfluid and/or
superconducting phase is realized

® Superfluids are weird systems: vanishing viscosity, quantized vorticity...
¢ Both fermions (like °He) and bosons (like “He) can become superfluid

® There are some physical situations in which both *He and “He become solids, but
apparently not supersolids
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® We don’t know what is inside compact stars. It might be that some superfluid and/or
superconducting phase is realized

® Superfluids are weird systems: vanishing viscosity, quantized vorticity...
¢ Both fermions (like °He) and bosons (like “He) can become superfluid

® There are some physical situations in which both *He and “He become solids, but
apparently not supersolids

Next:

What about quark matter? Can it look like a supersolid?
Does it happen? Which are the consequences? ....
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General recipe for superconductivity

® Degenerate system of fermions

® Attractive interaction (in some channel)

et e b Le chef BOS

Color superconductivity

e At large chemical potential, degenerate system of quarks

® Attractive interaction between quarks in 3 color channel

¢ We expect Tc ~ (10 - 100) MeV >> Theutron star ~ 10 =100 keV

N.b. Quarks have color, flavor and spin degrees of freedom: a long menu of colored dishes
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sizable strange quark mass mismatch of the Fermi
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Alford, Rajagopal, JHEP 0206 (2002) 031
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u ® Energy gained in pairing ~ 2AcFrL

m2

® Energy cost of pairing ~ o ~ 7‘9

m2

The CFL phase is favored for —2 < 2Ap;
[

~
Casalbuoni, MM et al. Phys.Lett. B605 (2005) 362

Forcing the superconductor to a homogenous gapless phase E(p) = —=0p+ \/ (D=5 AQC FL

Leads to the “chromomagnetic instability” Mg, <0

- J

2
mg

For

; Z 2Acrr some less symmetric CSC phase should be realized



LOFF-phase

LOFF (or FFLO) Larkin, Ovchinnikov (1964) and Fulde, Ferrel (1964)

(For op1 < op < O0p2  the superconducting LOFF phase 1s favored J

Cooper pairs with nonzero total momentum

® In momentum space

< Y(p1)Y(p2) > ~ Ad(p1 + P2 — 2q)

® In coordinate space

< P()P(x) > ~ AT
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Crystalline structures

® Structures combining more plane waves

® “No-overlap” condition between ribbons

Three flavors

< waicf}%wﬁj il Z AI Z €2iq?'r61a661ij

I1=2,3 q(}e{chb}

Rajagopal and Sharma Phys.Rev. D74 (2006) 094019

® Crystal oscillations Casalbuoni, MM et al. Phys.Rev. D66 (2002) 094006
MM, Rajagopal and Sharma Phys.Rev. D76 (2007) 074026



Fermionic dispersion laws

Fermions have an unisotropic gapless dispersion law. Defining €& = |p — 1| one has

E=c(0,9)¢

Velocity of fermions in two different structures

BCC
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Is this phase rigid?

Z

The shear modulus describes the response
X % of a crystal to a shear stress
i q y
4L = s e
p 254

1] .
0 “ stress tensor acting on the crystal

s¥ strain (deformation) matrix of the crystal

® Crystalline structure given by the spatial modulation of the gap parameter

® This pattern of modulation that is rigid

2 5 — : 5
S O ( A ) ( I ) More rigid than diamond!!

3\ 10MeV 400MeV 20 to 1000 times more rigid than the crust of neutron star

fm

MM, Rajagopal and Sharma Phys.Rev. D76 (2007) 074026



Gravitational waves from “mountains”




Gravitational waves from “mountains”




° ° €€ ® y»
Gravitational waves from “mountains

If the star has a non-axial symmetric deformation
(mountain) it can emit gravitational waves

ellipticity GW amplitude

= 1672G el . v?
€ = h o 4
T C r




° ° €€ ® y»
Gravitational waves from “mountains

If the star has a non-axial symmetric deformation
(mountain) it can emit gravitational waves

ellipticity GW amplitude
ot - IomeC ez~
(= AT 4
e c r

® The deformation can arise in the crust or in the core

® The maximum deformation depends on the breaking strain



° ° €€ ® y»
Gravitational waves from “mountains

If the star has a non-axial symmetric deformation
(mountain) it can emit gravitational waves

ellipticity GW amplitude
ot - IomeC ez~
(= AT 4
s c r

® The deformation can arise in the crust or in the core

® The maximum deformation depends on the breaking strain

¢ Large shear modulus

To have a “large” GW amplitude

¢ Large breaking strain




Using the non-observation of GW from the Crab by the LIGO experiment
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allowed regions

...we can restrict the parameter space!
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Summary

® The study of matter in extreme conditions allows to shed light on the basic

properties of QCD
e Color superconductivity is a phase of matter predicted by QCD

e In realistic conditions a crystalline rigid color superconducting phase should
be favored

e We are looking for signatures of this phase
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® With asymptotic freedom (1973) more robust results by Collins and Perry (1975), Baym
and Chin (1976)

® Classification of some color superconducting phases: Bailin and Love (1984)
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® Quark matter inside compact stars, Ivanenko and Kurdgelaidze (1965), Paccini (1966) ...

® Quark Cooper pairing was proposed by Ivanenko and Kurdgelaidze (1969)

® With asymptotic freedom (1973) more robust results by Collins and Perry (1975), Baym
and Chin (1976)

® Classification of some color superconducting phases: Bailin and Love (1984)

Interesting studies but predicted small energy gaps ~ 10 +100 keV

negligible phenomenological impact for compact stars

® A large gap with instanton models by Alford et al. (1998) and by Rapp et al. (1998)

® The color flavor locked (CFL) phase was proposed by Alford et al. (1999)




BCS Theory

Bardeen-Cooper-Schrieffer (BCS) in 1957 proposed a microscopic theory of fermionic superfluidity

“active” Fermi sphere
weak interaction fermions
and T=0
“frozen”

fermions




BCS Theory

Bardeen-Cooper-Schrieffer (BCS) in 1957 proposed a microscopic theory of fermionic superfluidity

“active” Fermi sphere
weak interaction fermions
and T=0
“frozen”
fermions

Cooper pairing : Any attractive interaction produces correlated pairs of “active” fermions

Cooper pairs effectively behave as bosons and condense



BCS Theory

Bardeen-Cooper-Schrieffer (BCS) in 1957 proposed a microscopic theory of fermionic superfluidity

“active” Fermi sphere
weak interaction fermions
and T=0
“frozen”
fermions

Cooper pairing : Any attractive interaction produces correlated pairs of “active” fermions

Cooper pairs effectively behave as bosons and condense

Quasiparticle dispersion law E(p) = /(e(p) — p)2 + A(p, T)2




BCS Theory

Bardeen-Cooper-Schrieffer (BCS) in 1957 proposed a microscopic theory of fermionic superfluidity

“active” Fermi sphere
weak interaction fermions
and T=0
“frozen”
fermions
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BCS-BEC

fermions
® : ® Cooper pairs: di-fermions with total
spin up :
: . momentum spin 0 and total momentum 0
@ spindown

VF
G K
BCS: loosely bound pairs ¢ 2> n—L/3

BEC: tightly bound pairs & < n~1/3

Type I (Pippard): A <€ first order phase transition to the normal phase

Type II (London): A > & second order phase transition to the normal phase



Chiral symmetry breaking

At low density the){SB 1s due to the condensate 5
that locks left-handed and right-handed fields (Y1)

In the CFL phase we can write the condensate as

<¢£i¢éj> = —( §i¢§j> = K100i08j — K204;08i

Color 1s locked to both left-handed and right-handed rotations.

L VW



