

XIV Conference on Theoretical Nuclear Physics in Italy Cortona, October 29 – 31, 2013

Symmetry Energy (EOS) & Isospin Physics by CHIMERA detector

Sara Pirrone EXOCHIM/ISODEC collaboration INFN-Sezione di Catania

Physics Case

 Results from selected experiment with Chimera detector

Conclusions & Perspectives

Physics Case

$$E(\rho,\delta) = E(\rho,\delta=0) + E_{sym}(\rho)\delta^2$$

$$\delta = \frac{\rho_n - \rho_p}{\rho_n + \rho_p} = \frac{N - Z}{A}$$

 $\rho = \rho_n + \rho_p$

HIC provide a unique opportunity to create in laboratory transient states of nuclear matter in several conditions of density and temperature

CHIMERA@LNS

A.Pagano et al., NPA734 (2004)

CHIMERA

Charge Heavy Ion Mass and Energy Resolving Array

Dynamical range : from fusion, fusion-fission to multifragmentation reaction

Example of Chimera coll. contribution to isospin physics studies

- Study of the systems ¹²⁴Sn+⁶⁴Ni and ¹¹²Sn+⁵⁸Ni @35 A.MeV. Neck emission, Time scale for fragment formation, fragment hierarchy, Dynamical fission (Chimera coll) LNS
- Isospin dependence in the competition between incomplete fusion and dissipative binary reactions in ⁴⁰Ca,⁴⁸Ca + ^{40,48}Ca, ⁴⁶Ti @25 AMeV (Chimera coll.) LNS
- Study of isospin diffusion in the reactions ¹²⁴Sn+¹²⁴Sn, ¹²⁴Sn+¹¹²Sn, ¹¹²Sn+¹²⁴Sn, ¹¹²Sn+¹¹²Sn, ¹¹²Sn+¹¹²Sn, ¹¹²Sn+¹²⁴Sn, ¹¹²Sn+¹²⁴Sn+¹²⁴Sn, ¹¹²Sn+¹²⁴Sn+
- Fast collinear partitioning of the ¹⁹⁷Au + ¹⁹⁷Au @15 A.MeV, system into three and four fragments of comparable size (*Chimera coll.*) LNS
- Exploring the isospin dependence on decay from compound nucleus in the reactions ^{78,86}Kr + ^{40,48}Ca @10 A.MeV (*Chimera-Indra coll.*) LNS
- Constraining the Symmetry Energy at Supra-Saturation Densities With Measurements of Neutron and Proton Elliptic Flow, Au+Au, ⁹⁶Zr+⁹⁶Zr and ⁹⁶Ru+⁹⁶Ru @400 A.MeV (AsyEos-Chimera coll.) GSI

In progress...

Study of the systems ¹¹²Sn + ⁵⁸Ni (n-poor), ¹²⁴Sn + ⁶⁴Ni (n-rich)@ 35 AMeV *Time scale for fragment formation, fragment hierarchy, Neck Emission - Dynamical fission*

Ternary and semiperipheral events selection

^{124,112}Sn + ^{58,64}Ni @ 35 AMeV

Neck formation

E.De Filippo et al. PRC71,44602 (2005)

TIME SCALE: Emission Chronology by velocity correlation

¹²⁴Sn+⁶⁴Ni 35 MeV/A

Relative velocities are expressed in relationship with the Viola velocity (pure Coulomb repulsion)

Viola et al Nucl. Phys. A472, 318 (1987)

E.De Filippo et al. PRC71,44602 (2005)

v_{rel}/v_{viola} =1

 $v_{rel}/v_{viola} \neq 1$

SEQUENTIAL DECAY OF IMF FROM PLF (or TLF), $t \ge 120 \text{ fm/c}$

≥ 120 fm/c (2,3)

NON-STATISTICAL EMISSION OF IMF,

t ~ 40 fm/c (1)

TIME SCALE: Emission Chronology by velocity correlation

¹²⁴Sn+⁶⁴Ni 35 MeV/A

E.De Filippo et al, PRC86 014610 2012

IMF

Correlations with IMFs (Z \leq 8) isotopic properties

The correlation shows that the greatest neutron enrichment is linked to greater deviations from Viola systematics, that is to fast prompt emission of IMF.

We can select Dynamical emission Statistical emission

E.De Filippo et al. PRC71,44602 (2005)

Dynamical and Sequenzial emission of IMF

Stochastic Mean Field (SMF) + GEMINI calculation

¹²⁴Sn+⁶⁴Ni 35 A.MeV

SMF - microscopic approach that describe the evolution of systems by Boltzmann-Nordheim-Vlasov transport equation.

The model includes nuclear mean field dynamics and effect of fluctuations.

V. Baran et al. Nucl. Phys. A730 329 (2004).

Dynamically emitted particles

Data consistent with $\gamma \approx 1$

E.De Filippo et al, PRC86 014610 2012

Calculations performed by: M. Colonna

From early prompt neck fragmentation to PLF dynamical fission

With respect to the prompt neck emission, the emission of heavy IMFs from projectile-like fragment break-up appears at a later stage

The time-scale of the process is one of the the signature among different mechanisms:

1)Early neck fragmentation (40-120 fm/c) 2)Dynamical fission (120-300 fm/c) 3)Equilibrated fission (>1000 fm/c)

Dynamical Fission: in ¹²⁴Sn+⁶⁴Ni and ¹¹²Sn+⁵⁸Ni @35 A.MeV

Statistical fission is characterized by isotropic fission fragment angular distribution,

Dynamical Fission is characterized by fast AL fragment emission preferentially backwards in the PLF reference system, i.e., towards the target nucleus

E. De Filippo et al., Isospin collaboration, Phys. Rev. C71, 064604 (2005) P. Russotto et al., Int. J. Mod. Physics E15 410 (2006) P. Russotto et, al. Phys. Rev. C81, 064605 (2010)

Fission-like fragments angular cross sections (I)

 Φ_{plane} =fission angle in the reaction plane

P. Russotto et al., PRC 81 064605 (2010)

¹²⁴Sn+⁶⁴Ni

Comparison of IMFs cross sections for ¹²⁴Sn+⁶⁴Ni and ¹¹²Sn+⁵⁸Ni

Probability ratio of dynamical and statistical emission

Dynamical component: enhanced in the neutron rich (especially for heavier IMF) Statistical component: almost equal (A ratio: 188/170 ~1.1)

The InKilsSy (INverse KInematics ISobaric SYstems) April 2013

The idea is to use uses a projectile/target combination $^{124}Xe+^{64}Zn$, having the same mass of the n-rich $^{124}Sn+^{64}Ni$ system, and a N/Z near to the n-poor one $^{112}Sn+^{58}Ni$ at the same bombarding energy of 35 A.MeV using the 4π CHIMERA and a Farcos module.

System	N/Z Projectile	N/Z target	N/Z compound
¹²⁴ Sn+ ⁶⁴ Ni	1.48	1.29	1.41
¹²⁴ Xe+ ⁶⁴ Zn	<u>1.30</u>	<u>1.13</u>	<u>1.24</u>
¹¹² Sn+ ⁵⁸ Ni	1.24	1.07	1.18

A new setup: the 4π CHIMERA + 4 modules of FARCOS prototype

- Based on (62x64x64 mm³) clusters
- 1 square (0.3x62x62 mm³) DSSSD 32+32 strips
- 1 square (1.5x62x62 mm³) DSSSD 32+32 strips
- 4 60x32x32 mm³ CsI(TI) crystals (6 cm)

4 telescopes 25 cm from the target $\theta_{lab} \sim$ 16-44 deg, $\Delta \phi \sim$ 45 deg

Study of the systems

^{40,48}Ca + ^{48,40}Ca @ 25 AMeV

Isospin effects on reaction mechanism and fragment production

Study of N/Z effects on reaction mechanism and fragment production in central and semicentral collision at 25 AMeV (near multifragmentation trheshold)

$^{40}Ca + ^{40}Ca$	$N/Z_{tot} = 1.0$
⁴⁰ Ca + ⁴⁶ Ti	$N/Z_{tot} = 1.05$
⁴⁰ Ca + ⁴⁸ Ca	$N/Z_{tot} = 1.2$
⁴⁸ Ca + ⁴⁸ Ca	$N/Z_{tot} = 1.4$

Selected quasi- central collisions - M₁, M₂ two biggest fragment

 $^{48}Ca + ^{48}Ca, ^{40}Ca + ^{48}Ca$ @25 A.MeV $^{40}Ca + ^{46}Ti, ^{40}Ca + ^{40}Ca$

The N/Z degree of freedom strongly influences the *reaction mechanism*

• Larger N/Z \rightarrow one massive fragment emission as in CF -ICF events (ER) $M_1 > M_2$

• Lower N/Z \rightarrow lighter and faster mass emission as in binary-like events (BL) $M_1 \sim M_2$

Mass of heaviest fragment

Comparison with Co MD (Constrained Molecular Dynamics) II + Gemini

Comparisons with CoMD-II model indicates a sensitivity of the reaction mechanism to the asy-EOS : the best agreement is with a slightly stiff (γ=1) symmetry term

F. Amorini et al., Phys. Rev Lett. 102 112701 (2009)I.Lombardo et al., Phys. Rev. C82 014608 (2010)M. Papa and G. Giuliani, EPJ A39 (2009)

23

Even -odd effects on Z and N distributions of light fragments

I. Lombardo et al. Phys. Rev. C84 024613 (2011).

N/Z increases

Study of the systems ^{78,86}Kr + ^{40,48}Ca @10 AMeV Isospin influence on the reaction and emission mechanism of IMF (Z≥3) Collisioni fra ioni pesanti con fasci stabili ed esotici
 Regime a bassa energia E/A ≤ 15 MeV/A
 Meccanismo di reazione FUSIONE

dipendenza dall'isospin (N/Z) del meccanismo di formazione e emissione dei frammenti di massa intermedia ($Z \ge 3$) dal CN

- per ottenere informazioni:
- parametro densità dei livelli, (proprietà termiche, E*, m_{effective})
- barriera di fissione, (Esym, energia di Wigner)
- viscosità, (accoppiamento effetti collettivi-intrinseci, E_F)

E475SINDRA @GANILE = 5.5 AMeV 78,82 Kr + 40 Ca 118,122 Ba* (~ 100 MeV)

CN neutron rich (0**)**

•30% less fission ($\mathbb{Z} \ge 14$)

•Less even-odd staggering of IMF ($6 \le \mathbb{Z} \le 12$)

G. Ademard et al. PRC 83 (2011) 054619

$3 \le \theta \le 44^{\circ}$ IC-Si-CsI forward part

Energy, ang. Distr. RP
Charge distribution
Cross section decay mode

Comparison with transition state model GEMINI code

R.J.Charity et al, Nucl.Phys.A483 (1988)
D.Mancusi et al, PhysRev C 82 (2010)

G. Ademard et al. PRC 83 (2011) 054619

Statistical Model Fermi Gas model (level density) Hauser-Feschbach for LCP's Trantion state model for IMF Z>2 FRLDM barrier from Sierk Structure effect NOT considered **Dynamical model**

DNS in competition to CN

Quasi-fission phenomena

N/Z dependence not considered

DSN (di-nuclear system) -model

Sh.A.Kalandarov et al. PRC82 (2010)

ISODEC CHIMERA@LNS E = 10 AMeV ${}^{78}Kr + {}^{40}Ca \longrightarrow {}^{118}Ba$ ${}^{86}Kr + {}^{48}Ca \longrightarrow {}^{134}Ba$

• Higher energy

Influence on the amplitude of the staggering, on the temperature of the emitting system.

• Isotopic separation of IMF

to investigate the staggering effects looking at the isotopic distribution of IMF.

• Exploration of a larger domain in N/Z of the system (stable beam!)

to study the dependence from the N/Z on the mechanism of complex fragment emission from CN

• Exclusive measurements in a large angular range

CN	¹¹⁸ Ba	¹³⁴ Ba
E*(MeV)	215	270
V _B (MeV)	90	87
E _{CM} /V _B	2.9	3.5
(N/Z) _{tot}	1.11	1.39

ITA-FRA Collaboration LEA COLLIGA agreement (GANIL & INFN LNL-LNS)

n-rich

n-poor

Distribuzione in Massa Carbonio

9 = 15°

S.P. et al., EPJ Web of Conf. 17,16010 (2011) ,G.Politi et al, EPJ Web of Conf. 21 (2012) 02003 M.La Commara et al., Proc.of the IWM2011, GANIL,Caen, France (in press) 2012

- influenza Isospin (N/Z)
- influenza forza di pairing
- -influenza effetti di struttura (M. D'Agostino et al.,
- NPA 861 (2011) 47)
- connessione con il termine Esym (modelli)

Tesi B.Gnoffo 2013

Confronto Rese Normalizzate PRELIMINARE 10.5° ≤ 9 ≤ 15.5°

Very preliminary comparison with DiNuclear System (DNS) code

Simulation performed for the TOTAL cross section and normalized at Z=5

DNS seems to reproduce slightly better the n-poor system

New systems with higher N/Z would bring new insights ⁹⁴Kr + ^{40,48}Ca 10 AMev ^{132,140}Ba* E* ~ 320 MeV LOI @ SPES

In-flight fragmentation beams @ LNS

In-flight fragmentation beams @ LNS Production Tests at the CHIMERA beam line

¹⁸O + ⁹Be (1.5 mm) at 55 MeV/A

Primar	y beam 88W, 5.5x10 ¹¹ p/s
	Khz
¹⁶ C	40
¹⁷ C	4
¹³ B	23
¹¹ Be	6 magn. Set. Bρ=2.71 Tm
¹⁰ Be	21
⁸ Li	11

E of secondary beam 40-50 MeV/A

Energy secondary beams 20-25 MeV/A

Fig.4 Identification scatter plot of ⁶⁸Ni fragm ntation beam

⁷⁰Zn + ⁹Be (0.25 mm) 40 MeV/A,

primary beam 100W

⁶⁸Ni Rate 20kHz Energy 28 MeV/A

Search for iso-scalar excitation of the PIGMY resonance in ⁶⁸Ni nuclei

G.Cardella, E.G.Lanza for the EXOCHIM coll.

Conclusion

Experimental results from HIC realized with stable beam and with the 4π CHIMERA detector were presented.

We put in light as reaction mechanism, i.e. decay and emission processes, dynamics, time scale and composition of the produced fragments, are dependent from the influence the ISOSPIN on the effective nuclear interaction.

The obtained results on E_{sym} are all consistent, even if yet large uncertainties with an slightly ASYSTIFF ($\gamma = 1$) parametrization of the Esym, both in *sub-saturation* and *supra-saturation* ρ regions.

We need :

Reduce experimental error bars

- > Perform more complete analyses
- >Improve theoretical description

It will be very interesting to extend this meausurements with the radiactive beams.

In preparation experiment by using *Fragmentation beams* @LNS and the new facilities as *SPES* @LNL and with detectors at high specialization, (as well as neutron detectors and correlators).

Use of new RIB facilities (exotic neutron rich, proton rich beams) . Isospin effects are enhanced by increasing the system asymmetry. Comparison with stable beam needed.

This will make possible to refine and to improve our knowledge.

EXOCHIM - collaboration

F.Amorini⁶, L.Auditore^{7,8}, C.Beck⁹, I.Berceanu¹⁰, E.Bonnet⁵, B.Borderie¹¹, G.Cardella¹, A. Chbihi⁵, M.Colonna⁶, A.D'Onofrio^{4,12}, J.D.Frankland⁵, E.Geraci^{2,1}, E.Henry¹³, E.LaGuidara^{1,14}, G.Lanzalone^{15,6}, P Lautesse¹⁶, D.Lebhertz⁵, N.LeNeindre¹⁷, I.Lombardo⁴, D.Loria^{7,8}, M.LaCommara^{3,4}, S. Pirrone¹, G.Politi^{1,2}, J.P.Wieleczko⁵, G.Ademard⁵, E.DeFilippo¹, B.Gnoffo², M.Vigilante^{3,4}, K.Mazurek⁵, A.Pagano¹, M.Papa¹, E.Piasecki¹⁸, F.Porto^{2,6}, M.Quinlann¹³, F.Rizzo^{2,6}, E.Rosato^{3,4}, P.Russotto^{2,6}, W.U.Schroeder¹³, G.Spadaccini^{3,4}, A.Trifirò^{7,8}, J.Toke¹³, M.Trimarchi^{7,8}, G.Verde^{1,}L. Acosta, V. Baran, L. Francalanza, S. T. Cap, G. Gianì, L. Grassi, A. Grzeszczuk, P. Guazzoni, J. Han, C. Maiolino, T. Minniti, E.V. Pagano, A. Pop, F. Porto, L.Quattrocchi, J. Wilczyński, L. Zetta.

1) INFN - Catania, Italy

- 2) Dipartimento di Fisica e Astronomia, Università di Catania, Italy
- 3) Dipartimento di Scienze Fisiche, Università Federico II Napoli, Italy
- 4) INFN Napoli, Italy
- 5) GANIL Caen, France
- 6) INFN LNS Catania, Italy
- 7) Dipartimento di Fisica, Università di Messina, Italy
- 8) INFN Gruppo Collegato di Messina, Italy
- 9) IN2P3 IPHC Strasbourg, France
- 10) IPNE, Bucharest, Romania 11) IN2P3 IPN Orsay, France
- 12) Dipartimento di Scienze Ambientali Seconda Università di Napoli, Caserta, Italy
- 13) University of Rochester, USA
- 14) Centro Siciliano Fisica Nucleare e Struttura della Materia, Catania, Italy
- 15) Università Kore, Enna, Italy 16) IN2P3 IPN Lyon, France
- 17) IN2P3 LPC Caen, France 18) University of Warsaw, Poland