M.Taiuti

### A (TOO) SHORT OVERVIEW OF THE EXPERIMENTAL NUCLEAR PHYSICS ACTIVITY IN ITALY



#### Structure of the CSN3

Current Activity

Perspectives

## The 4 Research Lines





### Facilities- european



### Facilities-extra-european

continuos activity
 temporary activity



# L1 - Quarks and Hadron Dynamics

- Physics performed with Leptonic probes (Jlab, Bonn, Mainz) and Hadronic probes (DAPHNE@LNF)
- Non perturbative QCD (baryons and mesons)
- NLO pQCD
- Hadronization phenomena in nucler matter
- Strangeness physics in nuclear matter
- N-N correlations
- Spin physics

## The Structure of the Nucleon

- Proton and neutron e.m.
  form factors
- Study of Baryonic
  Resonances

W ~ 1.5 GeV – 3 GeV

First measurement of the circular beam asymmetry in the  $\gamma p \rightarrow \pi^{o} \eta p$  reaction

Search for exotic mesons
 <u>Few body systems</u>



### Strangeness and the Nuclear Force

Width Fis[eV]

- \* @LNF
- Kaonic atoms

Measurement of the energy for the level 1s for the hydrogen kaonic atom

Next measurement:

deuterium



## JLAB12

- JLAB collected an integrated luminosity 10<sup>6</sup> greater than SLAC@DIS era
- This allows exclusive reaction studies
- i.e. Deeply Virtual
  Compton Scattering for
  3d mapping of the quark
  momenta distribution



### Upgrade to JLAB@12 GeV









#### Potentially a great opportunity for the nuclear physics community



- Strong impact on the overall budget
- Agreement with the German management not yet defined

## L2 – Phase Transitions in NM

- Global observables and collective effects :
  - Multiplicities, elliptic flow ...
  - Degrees of freedom vs. T
  - Fluctuations and critical behaviours
  - hadron ratios and spectra, dilepton continuum, direct photons....
  - Partonic energy loss in quark-gluon plasma
  - jet quenching, high p<sub>T</sub> spectra, open charm and open beauty
  - Deconfinements and chiral symmetry restoration: charmonium and bottonium neutral to charged ratios, resonances
- At LHC the longest lifetime of quark-gluon plasma





- D meson production
  nuclear modification
- First measurement of
  D meson elliptic flow





 Beside the publication of results on individual channel, there are attempts to give an overall description of the



i.e. the size



### Recent Activity

#### 🖌 Early 2013 p-Pb run

p-Pb as control experiment:
 first assessment of cold
 nuclear matter effects
 → important for the
 interpretation of nuclear
 modification factors
 measured in Pb-Pb



0.4

5

10

25

20

p\_ (GeV/c)

15



#### L3 - Nuclear Structure and Reaction Mechanisms



#### 5-10 MeV/A

Heavy-ions 50 MeV/A

Decays (in beam)



Shell structure Collettive modes-shape vs N/Z Symmetries Reactions

peripheral

Nuclear structure

Termodynamics Viscosity-high spin Multiframm



Equation of state

GAMMA- PRISMA- EXOTIC- NUCLEX

DREAMS - LNS\_STREAM - EXOCHIM

# **Overview**

#### ✤ LNL

- ~140 researchers
- □ ~ 100 FTE

#### LNS

- ~ 210 researchers
- ~ 150 FTE
- ~ 30% of the CSN3 researchers have experiments @ LNL and LNS
  Availability of RIB "cocktail beams" EXOTIC @ LNL, FRIBS @ LNS
   \* SPES



#### CHIMERA

# MAGNEX+ EDEN







#### PRISMA

# \* AGATA• Presently @GSI



### Developments

2011/11/14 11:31

#### GALILEO

From previous
 GASP detectors

\* FAZIA



# Lifetime Measurement with AGATA

- \* Stellar burning rates and  ${}^{14}N(p,\gamma){}^{15}O$  reaction
- The sub-threshold resonance corresponding to the first excited 3/2+ state in <sup>15</sup>O (6.79 MeV) is predicted to play a dominant role when extrapolating the crosssection to the Gamow peak region
- @fs nuclear level lifetime



# **Giant Pairing Vibration**

 Search with 2n transfer process
 MAGNEX play a major role



## Toward SPES – 1 day meetings

- \* 1° Spes One day WS @ Napoli : Transfer reactions with RIBs April 2012
- 2° Spes One day WS @ Firenze:
  Coulomb Exitation with RIBs Sept 2012
- 3° Spes One day WS @ Catania:
  Isospin on reaction mechanism with RIBs Oct.2013
- 4° Spes One day WS @ Milano:
  Collective excitations in exotic nuclei Dic 2013
- 5° Spes One day WS @ LNL:
  Fusion reaction with RIBs

# L4 - Nuclear Astrophysics and Interdisciplinary Research

- Reactions (a) stellar energy
  - Nucleosynstesis
  - LUNA@LNGS, ASFIN@LNS and ERNA
- n-capture for astrophysics and reactor applications
  - N\_TOF @CERN
- Annihilation of anti-protons in nuclei in nuclei 5keV – 5 MeV region of cosmological interest
  - ASACUSA @CERN
- Pauli principle violation in atomic transitions
  - VIP @LNGS
- Gravity effects on antimatter
  - AEGIS @CERN







### ERNA



CVI Meeting Pisa 3/10/2012



- <sup>25</sup>Mg is crucial for s-process both as involved as a neutron poison and in neutron production
- Elements abundance strongly depends on the n+Mg cross sections

# LUNA-MV @ LNGS



- A 3.5 MV accelerator to measure key reactions of the Helium burning and neutron sources for the s-process:
  - □ <sup>12</sup>C(α,γ)<sup>16</sup>O
  - □ <sup>13</sup>C(α,n)<sup>16</sup>O
  - <sup>22</sup>Ne(α,n)<sup>25</sup>Mg
  - $(\alpha, \gamma)$  reactions on <sup>14,15</sup>N and <sup>18</sup>O
- Relevant at higher temperatures (larger energies) than reactions belonging to the hydrogen-burning studied so far at LUNA





### Conclusions

 The Italian Nuclear Experimentalists are very active

- The role of the four National Laboratories is strategic for the success of our researchs
- The upgrade programs will permit to study new very interesting problems