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              The “Realistic” Shell Model�
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u  Understand the  properties of nuclei  starting from 
the forces between nucleons �

u Understand limits of the theory, because of the 
absence of free parameters�
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               Derivation of Heff �

  Two main ingredients 

L.	
  Coraggio	
  et	
  al,	
  Prog.	
  Part.	
  Nucl.	
  Phys.	
  62,	
  	
  135	
  (2009)	
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  et	
  al,	
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  of	
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  327,	
  	
  2061	
  (2012)	
  	
  

•  Nucleon-nucleon potential 
 
•  Many-body theory 
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Potentials which reproduce the two-body data with 
    χ2/Ndata ~ 1   

          Nucleon-Nucleon potential         �

•   Chiral potentials 
ü  long-range components ruled by the symmetries of the 
 low-energy QCD  
 

ü  two- and many-body forces generated on the same footing 
calculations: 2 body at next-to-next-to-next-to-leading order – N3LO 
                    3 body at next-to-next-to-leading order - NNLO     

•  CD-Bonn 
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Optimitazion of the NN chiral potential  
 

namely of the short-range components included as 
contact terms and  parametrized in terms of constants 
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                      Vlow-k potential       �

Vlow-k potential  
•  is confined within a momentum-space  
    cutoff Λ 
high-momentum modes are integrated out down to Λ  

 

•  preserves the onshell properties of the 
original NN potential  

 

High-­‐momentum	
  repulsive	
  components	
  of	
  VNN	
  
prevent	
  its	
  use	
  in	
  nuclear	
  structure	
  perturba4ve	
  

calcula4ons	
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u Heff	
  	
  is	
  wri3en	
  as	
  a	
  series	
  

	
  in	
  terms	
  of	
  	
  the	
  	
  	
  	
  	
  	
  	
  	
  -­‐	
  	
  box	
  and	
  its	
  deriva=ves	
  


Q = PH

1
P + PH

1
Q 1
ε − QHQ

QH
1
P

-­‐	
  box	
  folded-­‐diagram	
  method	
  ˆ	
  Q
 	
  	
  

u the	
  series	
  for	
  Heff	
  is	
  summed	
  up	
  by	
  itera=ve	
  
techniques	
  (Krenciglowa-­‐Kuo,	
  Lee-­‐Suzuki)	
  

ˆ	
  Q 	
  	
  

Q=1-P  
ε	
  =	
  unperturbed	
  energy	
  for	
  a	
  degenerate	
  model	
  space	
  	
  (PH0P=ε)	
  

The perturbative approach to the shell-model Heff �
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Note:	
  	
  No	
  (V-­‐U)-­‐inser=on	
  diagrams	
  [1-­‐1+1-­‐2]	
  are	
  shown	
  except	
  for	
  the	
  
1-­‐body	
  1st-­‐order	
  case.	
  	
  These	
  arise	
  from	
  the	
  presence	
  of	
  	
  -­‐U	
  in	
  H1=V-­‐U,	
  
and	
  are	
  zero	
  only	
  when	
  U=HF	
  poten=al	
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Modern calculations do not go beyond 
 third order 
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•  order-by-order convergence 
 
 

  
• intermediate-state space convergence 

             Convergence properties �

L.	
  Coraggio	
  et	
  al,	
  Annals	
  of	
  Phys.	
  327,	
  	
  2061	
  (2012)	
  	
  

truncation of the Q space 

inclusion of diagrams up to finite order in 
the interaction 
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  order	
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magicity @ N= 14 & 16 
 

location of the neutron drip line and 3-body forces 
 

T. Otsuka et al, PRL 105, 032501 (2010) 
G. Hagen et al, PRL 108, 242501 (2012) 
H. Hergert et al, PRL, 110, 242501 (2013)… 
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  (2011)	
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Figure 3. (Color online) Experimental
[14] and calculated ground-state energies for
oxygen isotopes from A = 18 to 28. N is
the number of neutrons. The red dashed line
refers to (non-experimental) estimated values
[14]. See text for details.
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Figure 4. (Color online) Experimental [19]
and calculated excitation energies of the yrast
Jπ = 2+ states for oxygen isotopes from
A = 18 to 24. N is the number of neutrons.

that this is correctly reproduced by our calculations when comparing the results shown in Figs.
2 and 4.

As mentioned in Section II, we have also performed calculations starting from a Vlow−k derived
from the CD-Bonn potential. Let us now examine the region of pf -shell nuclei which have been
studied deriving an effective hamiltonian for valence nucleons interacting in the four pf orbitals
outside doubly-closed 40Ca.

In Fig. 5 we have plotted the calculated (continuous black line) and experimental (continuous
red line) g.s. energies per valence neutron of even-mass calcium isotopes, relative to 40Ca,
as a function of A. As in the case of the oxygen isotopes, our calculations overestimate the
experimental data, and this may again be traced to the lack of the inclusion of a three-body
force that could correct the calculated SP spectrum. In fact, if we upshift the latter so as to
reproduce the experimental 41Ca binding energy respect to 40Ca, our results are upshifted by
about 1.6 MeV (black dashed line), thus leading to good agreement with the experimental data
along the whole isotopic chain.
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Figure 5. (Color online) Experimental
[14] and calculated ground-state energies per
valence neutron for calcium isotopes from
A = 42 to 56. Nval is the number of valence
neutrons. See text for details.
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Figure 6. (Color online) Experimental [19]
and calculated excitation energies of the yrast
Jπ = 2+ states for calcium isotopes from
A = 42 to 54.

The good quality of our effective interaction for calcium isotopes is further confirmed by the
inspection of Fig. 6, where the experimental and calculated excitation energies of the yrast 2+

states are reported as a function of A. It can be seen that our calculations reproduce nicely the

	
  	
  	
  	
  Yrast 2+ states in Oxygen isotopes 
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outside doubly-closed 40Ca.
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The good quality of our effective interaction for calcium isotopes is further confirmed by the
inspection of Fig. 6, where the experimental and calculated excitation energies of the yrast 2+

states are reported as a function of A. It can be seen that our calculations reproduce nicely the

Ground-state energies for Oxygen isotopes 

•  Calcula4ons	
  overes4mate	
  	
  the	
  expt	
  data:	
  fail	
  to	
  predict	
  
that	
  26O	
  e	
  28O	
  are	
  unbound	
  to	
  two	
  neutron	
  decay	
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and calculated excitation energies of the yrast
Jπ = 2+ states for oxygen isotopes from
A = 18 to 24. N is the number of neutrons.

that this is correctly reproduced by our calculations when comparing the results shown in Figs.
2 and 4.

As mentioned in Section II, we have also performed calculations starting from a Vlow−k derived
from the CD-Bonn potential. Let us now examine the region of pf -shell nuclei which have been
studied deriving an effective hamiltonian for valence nucleons interacting in the four pf orbitals
outside doubly-closed 40Ca.

In Fig. 5 we have plotted the calculated (continuous black line) and experimental (continuous
red line) g.s. energies per valence neutron of even-mass calcium isotopes, relative to 40Ca,
as a function of A. As in the case of the oxygen isotopes, our calculations overestimate the
experimental data, and this may again be traced to the lack of the inclusion of a three-body
force that could correct the calculated SP spectrum. In fact, if we upshift the latter so as to
reproduce the experimental 41Ca binding energy respect to 40Ca, our results are upshifted by
about 1.6 MeV (black dashed line), thus leading to good agreement with the experimental data
along the whole isotopic chain.
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and calculated excitation energies of the yrast
Jπ = 2+ states for calcium isotopes from
A = 42 to 54.

The good quality of our effective interaction for calcium isotopes is further confirmed by the
inspection of Fig. 6, where the experimental and calculated excitation energies of the yrast 2+

states are reported as a function of A. It can be seen that our calculations reproduce nicely the
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that this is correctly reproduced by our calculations when comparing the results shown in Figs.
2 and 4.

As mentioned in Section II, we have also performed calculations starting from a Vlow−k derived
from the CD-Bonn potential. Let us now examine the region of pf -shell nuclei which have been
studied deriving an effective hamiltonian for valence nucleons interacting in the four pf orbitals
outside doubly-closed 40Ca.

In Fig. 5 we have plotted the calculated (continuous black line) and experimental (continuous
red line) g.s. energies per valence neutron of even-mass calcium isotopes, relative to 40Ca,
as a function of A. As in the case of the oxygen isotopes, our calculations overestimate the
experimental data, and this may again be traced to the lack of the inclusion of a three-body
force that could correct the calculated SP spectrum. In fact, if we upshift the latter so as to
reproduce the experimental 41Ca binding energy respect to 40Ca, our results are upshifted by
about 1.6 MeV (black dashed line), thus leading to good agreement with the experimental data
along the whole isotopic chain.
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tensor force 

Because the J dependence is averaged out in Eq. (2), the
monopole interaction, VM, represents the angular-free, i.e.,
monopole property of the original interaction, V, while it
still depends on the isospin. If neutrons occupy j0 and one
looks into the orbit j!! j0" as a proton orbit, the shift of the
single-particle energy of j is given by

!!p!j" # 1
2fVT#0

j;j0 $ VT#1
j;j0 gnn!j0"; (3)

where nn!j0" is (the expectation value of) the number of
neutrons in the orbit j0. The same is true for !!n!j" as a
function of np!j0". The monopole effects from orbits
j0; j00; . . . are added as these orbits are filled. The single-
particle energy, including this monopole effect, is called
the effective single-particle energy (ESPE), and it depends
on the configurations. We shall discuss, in this Letter, how
the ESPE of an orbit j varies due to the tensor force as an
orbit j0 is filled.

If the orbit j0 is fully occupied by neutrons in Eq. (3),
only the monopole effect remains over the other multipoles
and Eq. (3) gives the shift of the bare single-particle energy
for this shell closure. If protons and neutrons are occupying
the same orbit, the change of ESPE becomes slightly more
complicated due to isospin symmetry [8].

We begin with cases like Fig. 1: with orbital angular
momenta being denoted by l or l0, protons are in either
j> # l$ 1=2 or j< # l% 1=2, while neutrons are in ei-
ther j0> # l0 $ 1=2 or j0< # l0 % 1=2. In examples to be
discussed, these orbits represent valence or hole states near
the Fermi surface, and their radial wave functions are given
by the harmonic oscillator potential for simplicity.

From now on, V is the tensor force. For the orbits j and
j0, the following identity can be derived,

!2j> $ 1"VTj>;j0 $ !2j< $ 1"VTj<;j0 # 0; (4)

where T # 0 and 1, and j0 is either j0> or j0<. Note that this
identity is in the isospin formalism, and can be applied not
only to cases like Fig. 1(a) but also to cases between
neutrons or between protons. The identity in Eq. (4) can
be proved by angular momentum algebra by summing all
spin and orbital magnetic substates for the given l. It is

assumed that the radial wave function is the same for j>
and j< orbits, which is exactly fulfilled in the harmonic
oscillator and practically so in other models if the orbits are
well bound. This identity does not hold if the single-
particle state j> or j< is identical to j0 (as excluded in
Fig. 1), because the substate summation is affected by the
isospin symmetry. However, the actual monopole matrix
elements follow the relation in Eq. (4) semiquantitatively.
One can prove that VTj;j0 # 0 for j or j0 # s1=2. Equation (4)
suggests that if both j> and j< orbits are fully occupied,
their total tensor monopole effect vanishes.

Only exchange processes in Fig. 1(b) contribute to VM
for the tensor force, while its direct contribution vanishes.
The same property holds for a spin-spin central interaction
[9]. If only exchange terms remain, the spin-coordinate
part of the T # 0 and 1 matrix elements are just opposite.
Combining this with ! ~"1 & ~"2" in Eq. (1), one obtains

VT#0
j;j0 # 3' VT#1

j;j0 for j ! j0: (5)

Thus, the proton-neutron tensor monopole interaction is
twice as strong as the T # 1 interaction.

The question is the way in which the tensor force drives
ESPE’s, and whether there is a general rule for this move-
ment. The answer is given in an intuitive way. In Fig. 2(a),
a nucleon on j< is colliding with another on j0>. Because of
the high relative momentum between them, the spatial
wave function of their relative motion is narrowly distrib-
uted in the direction of the collision which is basically the
direction of the orbital motion. The spins of two nucleons
are parallel in this case, giving rise to basically S # 1. The
ellipse in Fig. 2(a) represents such relative-motion wave
function being spread more along the total spin S # 1. This
is analogous to the case of the deuteron, and the tensor
force works attractively. The same mechanism holds for
two nucleons in j> and j0<. On the other hand, as in
Fig. 2(b), the tensor force produces a repulsive effect for
two nucleons in j> and j0> (or vice versa), because the
wave function of the relative motion is stretched in the
direction of the collision. Thus, we can obtain a robust
picture that j< and j0> (or vice versa) orbits attract each
other, whereas j> and j0> (or j< and j0<) repel each other. In
this picture, it is supposed that the tensor force being

FIG. 1 (color). (a) Schematic picture of the monopole interac-
tion produced by the tensor force between a proton in j>;< #
l( 1=2 and a neutron in j0>;< # l0 ( 1=2. (b) Exchange pro-
cesses contributing to the monopole interaction of the tensor
force.

FIG. 2 (color). Intuitive picture of the tensor force acting two
nucleons on orbits j and j0.
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Because the J dependence is averaged out in Eq. (2), the
monopole interaction, VM, represents the angular-free, i.e.,
monopole property of the original interaction, V, while it
still depends on the isospin. If neutrons occupy j0 and one
looks into the orbit j!! j0" as a proton orbit, the shift of the
single-particle energy of j is given by

!!p!j" # 1
2fVT#0

j;j0 $ VT#1
j;j0 gnn!j0"; (3)

where nn!j0" is (the expectation value of) the number of
neutrons in the orbit j0. The same is true for !!n!j" as a
function of np!j0". The monopole effects from orbits
j0; j00; . . . are added as these orbits are filled. The single-
particle energy, including this monopole effect, is called
the effective single-particle energy (ESPE), and it depends
on the configurations. We shall discuss, in this Letter, how
the ESPE of an orbit j varies due to the tensor force as an
orbit j0 is filled.

If the orbit j0 is fully occupied by neutrons in Eq. (3),
only the monopole effect remains over the other multipoles
and Eq. (3) gives the shift of the bare single-particle energy
for this shell closure. If protons and neutrons are occupying
the same orbit, the change of ESPE becomes slightly more
complicated due to isospin symmetry [8].

We begin with cases like Fig. 1: with orbital angular
momenta being denoted by l or l0, protons are in either
j> # l$ 1=2 or j< # l% 1=2, while neutrons are in ei-
ther j0> # l0 $ 1=2 or j0< # l0 % 1=2. In examples to be
discussed, these orbits represent valence or hole states near
the Fermi surface, and their radial wave functions are given
by the harmonic oscillator potential for simplicity.

From now on, V is the tensor force. For the orbits j and
j0, the following identity can be derived,

!2j> $ 1"VTj>;j0 $ !2j< $ 1"VTj<;j0 # 0; (4)

where T # 0 and 1, and j0 is either j0> or j0<. Note that this
identity is in the isospin formalism, and can be applied not
only to cases like Fig. 1(a) but also to cases between
neutrons or between protons. The identity in Eq. (4) can
be proved by angular momentum algebra by summing all
spin and orbital magnetic substates for the given l. It is

assumed that the radial wave function is the same for j>
and j< orbits, which is exactly fulfilled in the harmonic
oscillator and practically so in other models if the orbits are
well bound. This identity does not hold if the single-
particle state j> or j< is identical to j0 (as excluded in
Fig. 1), because the substate summation is affected by the
isospin symmetry. However, the actual monopole matrix
elements follow the relation in Eq. (4) semiquantitatively.
One can prove that VTj;j0 # 0 for j or j0 # s1=2. Equation (4)
suggests that if both j> and j< orbits are fully occupied,
their total tensor monopole effect vanishes.

Only exchange processes in Fig. 1(b) contribute to VM
for the tensor force, while its direct contribution vanishes.
The same property holds for a spin-spin central interaction
[9]. If only exchange terms remain, the spin-coordinate
part of the T # 0 and 1 matrix elements are just opposite.
Combining this with ! ~"1 & ~"2" in Eq. (1), one obtains

VT#0
j;j0 # 3' VT#1

j;j0 for j ! j0: (5)

Thus, the proton-neutron tensor monopole interaction is
twice as strong as the T # 1 interaction.

The question is the way in which the tensor force drives
ESPE’s, and whether there is a general rule for this move-
ment. The answer is given in an intuitive way. In Fig. 2(a),
a nucleon on j< is colliding with another on j0>. Because of
the high relative momentum between them, the spatial
wave function of their relative motion is narrowly distrib-
uted in the direction of the collision which is basically the
direction of the orbital motion. The spins of two nucleons
are parallel in this case, giving rise to basically S # 1. The
ellipse in Fig. 2(a) represents such relative-motion wave
function being spread more along the total spin S # 1. This
is analogous to the case of the deuteron, and the tensor
force works attractively. The same mechanism holds for
two nucleons in j> and j0<. On the other hand, as in
Fig. 2(b), the tensor force produces a repulsive effect for
two nucleons in j> and j0> (or vice versa), because the
wave function of the relative motion is stretched in the
direction of the collision. Thus, we can obtain a robust
picture that j< and j0> (or vice versa) orbits attract each
other, whereas j> and j0> (or j< and j0<) repel each other. In
this picture, it is supposed that the tensor force being

FIG. 1 (color). (a) Schematic picture of the monopole interac-
tion produced by the tensor force between a proton in j>;< #
l( 1=2 and a neutron in j0>;< # l0 ( 1=2. (b) Exchange pro-
cesses contributing to the monopole interaction of the tensor
force.

FIG. 2 (color). Intuitive picture of the tensor force acting two
nucleons on orbits j and j0.
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Ni	
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νg9/2	
   0.42	
   0.47	
  
νd5/2	
   0.05	
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TABLE IV: Calculated energies and spectroscopic factors for
states in 135Sb. The available experimental data are reported
for comparison (see text for details).

Calc. Expt.

Jπ E(MeV) C2S Jπ E(MeV)

(1/2+)1 0.659 0.07 (1/2+) 0.523

(1/2+)11 2.880 0.07

(1/2+)12 3.119 0.32

(1/2+)15 3.476 0.17

(3/2+)1 0.497 0.07 (3/2+) 0.440

(3/2+)3 1.320 0.07

(3/2+)12 2.600 0.32

(3/2+)13 2.697 0.10

(3/2+)14 2.768 0.09

(5/2+)1 0.387 0.42 (5/2+) 0.282

(5/2+)2 0.928 0.23

(5/2+)5 1.657 0.09

(5/2+)8 1.950 0.14

(7/2+)1 0.000 0.74 (7/2+) 0.000

(7/2+)2 0.944 0.18

(11/2−)1 2.652 0.52

(11/2−)2 3.132 0.11

(11/2−)5 3.522 0.21

TABLE V: Calculated energies and spectroscopic factors for
states in 137Sb.

Calc.

Jπ E(MeV) C2S

(1/2+)1 0.403 0.11

(3/2+)1 0.333 0.12

(5/2+)1 0.186 0.53

(5/2+)10 1.538 0.09

(7/2+)1 0.000 0.71

(7/2+)2 0.913 0.09

(11/2−)1 2.587 0.38

(11/2−)2 2.848 0.15

perimental energies of 135Sb [15] for states which can be
safely associated with the calculated ones are shown and
we see that they are very well reproduced by the theory.
As regards the spectroscopic factors, the calculated

values for both nuclei evidence a strong fragmentation
of the single-particle strength with respect to 135Te and
137Xe. We find, in fact, that in 135Sb only for three Jπ,
which reduce to two in 137Sb, there is one state with
a spectroscopic factor larger than 0.4. The remaining
strength in both nuclei is shared between many states.
We have seen in Sec. III.A that for the N = 83 isotones
this occurs only for Jπ = 5/2− in 137Xe.
The spreading of the single-proton strength in the

Z = 51 isotopes can be better seen through the cumula-
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FIG. 2: Summed spectroscopic factors for 135Sb and 137Sb as
a function of the included states (see text for details).

tive sum of the spectroscopic factors. This is shown in
Fig. ?? for each single-proton orbit as a function of the
number of states included in the sum. We see that the
fragmentation is particularly strong for the s1/2 and d3/2
strengths, which in 137Sb do not reach significant values
even when including the 15 lowest-lying states.
As a direct consequence of the large fragmentation in-

duced by addition of pairs of neutrons, the single-particle
spectrum of 133Sb is substantially modified, as shown in
Fig. ?? which is the counterpart of Fig. ??. This occurs
already in 135Sb with only two more neutrons, the most
noticeable change being the lowering of the 5/2+ state
by about 600 keV.
The low position of the 5/2+ state in 135Sb has been

indeed in focus of great attention [22, 23]. In some
studies, this was traced to a decrease of the proton
d5/2 − g7/2 spacing produced by the two neutrons be-
yond the N = 82 shell closure. On the other hand, our
predicted spectroscopic factor, 0.42, evidences that this
state has no strong single-particle nature, namely non-
negligible components with seniority larger than one are
contained in its wave function. This was discussed in de-
tail in Ref. [22], where we showed that the seniority-one
state |πd5/2(νf7/2)

2
J=0 >, with an unperturbed energy

of 0.962 MeV, is pushed down by the neutron-proton in-
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Precision Mass Measurements beyond 132Sn: Anomalous Behavior of Odd-Even
Staggering of Binding Energies

J. Hakala,* J. Dobaczewski, D. Gorelov, T. Eronen,† A. Jokinen, A. Kankainen, V. S. Kolhinen, M. Kortelainen,
I. D. Moore, H. Penttilä, S. Rinta-Antila, J. Rissanen, A. Saastamoinen, V. Sonnenschein, and J. Äystö‡
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(Received 5 March 2012; published 16 July 2012)

Atomic masses of the neutron-rich isotopes 121–128Cd, 129;131In, 130–135Sn, 131–136Sb, and 132–140Te have
been measured with high precision (10 ppb) using the Penning-trap mass spectrometer JYFLTRAP.

Among these, the masses of four r-process nuclei 135Sn, 136Sb, and 139;140Te were measured for the first

time. An empirical neutron pairing gap expressed as the odd-even staggering of isotopic masses shows a

strong quenching across N ¼ 82 for Sn, with a Z dependence that is unexplainable by the current

theoretical models.

DOI: 10.1103/PhysRevLett.109.032501 PACS numbers: 21.10.Dr, 21.60."n, 27.60.+j

The doubly magic 132Sn nucleus has been probed inten-
sively by nuclear spectroscopy over the last two decades. It
has been found to exhibit features of exceptional purity for
its single particle structure [1,2]. This provides an ideal
starting point for exploring the detailed evolution of nuclear
structure of more neutron-rich nuclei beyond the N ¼ 82
closed shell in the vicinity of Sn. Only a few experimental
and theoretical attempts along these lines have been per-
formed recently. No experimental data exist for excited
states or masses for nuclides below Sn with N > 82. The
experimental situation is slightly better for the Z > 50
isotopes of Sb and Te because of their easier access.

Recent data on the BðE2Þ transition strengths for 132Te,
134Te, and 136Te isotopes [3], and their interpretation using
a quadrupole-plus-pairing Hamiltonian and the quasipar-
ticle random phase approximation [4] suggested the need
for reduced neutron pairing to explain the observed anoma-
lous asymmetry in the BðE2Þ values across the N ¼ 82
neutron shell. This behavior was not observed in standard
shell model calculations [3]. Another shell model calcula-
tion of the binding energies of heavy Sn isotopes with
A > 133 [5] suggested the importance of pairing correla-
tions and the strength of the pairing interaction in general
for weakly bound nuclei. Therefore, it would be necessary
to probe the evolution of odd-even staggering of masses [6]
around the N ¼ 82 neutron shell to learn about the magni-
tude of pairing and its variation as a function of Z and N
beyond 132Sn.

The high precision of present-day ion-trap mass spec-
trometry combined with the high sensitivity [7] can pro-
vide the needed information on mass differences such as
one- and two-nucleon separation energies, shell gaps, and
empirical pairing energies. For example, the masses of
neutron-rich Sn and Xe isotopes were recently measured
up to 134Sn and 146Xe with the Penning-trap mass spec-
trometer ISOLTRAP at the CERN ISOLDE facility [8,9].
In this Letter we wish to present new data of high-precision
mass measurements of neutron-rich Cd, In, Sn, Sb, and Te

isotopes across the N ¼ 82 neutron shell by using the
JYFLTRAP Penning trap. These nuclides are also of inter-
est for nuclear astrophysics models of element synthesis, in
particular, to explain the large r-process abundance peak at
A ¼ 130 [10] (see Fig. 1). In more general context, a vast
body of nuclear data on neutron-rich isotopes is needed for
r-process nucleosynthesis predictions. Such data include
masses, single particle spectra, pairing characteristics, as
well as decay properties and reaction rates. In all of these
the binding energies or masses of ground, isomeric, and
excited states play key roles [10].
The measurements were performed using the JYFLTRAP

Penning-trap mass spectrometer [11] which is connected to
the Ion Guide Isotope Separator On-Line (IGISOL) mass
separator [12]. The ions of interest were produced in
proton-induced fission reactions by bombarding a natural
uranium target with a proton beam of 25 MeV energy. A
thorium target was used in the case of 129In and isotopes
of Sb.
Fission products stopped in a helium-filled gas cell at a

pressure of about 200 mbar as singly charged ions were
transported out of the gas cell, accelerated to 30 keV
energy, and mass separated. A gas-filled radio frequency

74 76 78 80 82 84 86 88 90 92

46

48

50

52

54

r r

r r r

r

r r r r

rr

r

r

r

r r r

r r

r

r

rrr

Stable isotope
Mass from PT
Mass from Q

β

only T
1/2

known

P
ro

to
n

nu
m

be
r

Neutron number

r

Cs
Xe
I
Te
Sb
Sn
In
Cd
Ag
Pd

FIG. 1. Neutron-rich isotopes with Tz % 13 whose masses
have been determined by Penning trap (PT) or Q! measure-
ments. Letter r denotes r-process nuclei according to Ref. [10].
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                                “shell quenching” 



	
  	
  	
  	
  	
  	
  	
  A.	
  Gargano	
  
Sezione	
  di	
  Napoli	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

the N ¼ 82 gap [4] (the surface pairing force is unable to
discriminate between the two surface-type orbitals !h11=2
and !f7=2 located below and above the N ¼ 82 shell gap,
respectively). Spherical calculations miss the experimental
values in Te and Xe isotopes [Fig. 4(a)], which indicates
that the polarization effects must here be taken into account
explicitly.

To better illustrate the trends in Z > 50 nuclei, in Fig. 5

we show the experimental neutron !ð3Þ staggering in Sn,
Te, and Xe isotopes along the N ¼ 81 and 83 lines, com-
pared with theoretical results. In experiment [Fig. 5(a)], the
difference between the N ¼ 81 and 83 isotones smoothly
decreases from about 0.5 MeV in Sn to almost zero in Xe,
whereas spherical results [discussed above and repeated in
Fig. 5(b)] show no such decrease at all.

To analyze the effects of polarizations induced by de-
formation, we have performed two additional HFB calcu-
lations. First, by using the code HFODD (v2.51i) [31], we
allowed valence particles or holes to induce self-
consistently deformed shapes. Then, the even isotones,
N ¼ 80, 82, and 84, turn out to be spherical anyhow;
namely, neither do the closed-core N ¼ 82 systems be-
come deformed, nor do the paired two neutron particles or
holes induce nonzero deformations. Only the polarization
effects exerted by unpaired odd neutron particles or holes
are strong enough to induce nonzero deformations in the
odd isotones, N ¼ 81 and 83.

In this way, the odd-particle polarizations lead to lower

values of the !ð3Þ staggering solely through increased
binding energies of odd isotones. Since such polarization

increases with adding protons, the obtained values of !ð3Þ

decrease with Z, as illustrated in Fig. 5(c). However, this
trend does not depend on whether deformation is induced
by odd particles or holes; therefore, on both sides of the
N ¼ 82 shell gap we obtain an identical decrease with Z, at
variance with experiment.

To test if the above results may be affected by the
particle-number nonconservation inherent in the HFB the-

ory, we have repeated all calculations by using the HFBTHO

code [32,33]. Here, within the Lipkin-Nogami method, we
were able to include the approximate particle-number
projection after variation. Moreover, the obtained solutions
were next exactly projected on good particle numbers.
Such a projected Lipkin-Nogami method was extensively
tested [33] and proved to be very efficient in describing
pairing correlations in near-closed-shell systems.
The obtained results are shown inFig. 5(d).We see that the

general pattern is not qualitatively changed. The dynamic
pairing correlations, which are now nonzero even in the
N ¼ 82 isotones, lead to larger values of the!ð3Þ staggering,
which in the N ¼ 81 isotones perfectly well reproduce the
experimental trend. However, in the N ¼ 83 isotones, the
disagreement with data remains a puzzle. Indeed, the asym-
metry of the trend of the staggering, measured below and
above the N ¼ 82 gap, points to specific effects related to
orbitals occupied beyond N ¼ 82 or to their weak binding,
which are not captured by the current state-of-the-art theo-
retical approaches.
This work has been supported by the Academy of

Finland under the Centre of Excellence Program 2006–
2014 (Nuclear and Accelerator Based Physics Program at
JYFL) and the FIDIPRO program.
Note added in proof.—Recently, another Penning trap

study [34] appeared where some isotope masses overlap-
ping with our data set were measured showing excellent
agreement.
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FIG. 5 (color online). Odd-even staggering for the N ¼ 81 and
83 isotones as measured in experiment (a) and estimated within
the spherical (b), deformed (c), and deformed particle-number-
conserving (d) self-consistent calculations.
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TABLE I: Calculated and experimental binding energies B,
relative to 132Sn, of Sn, Sb, Te, and Xe isotopes.

Nucleus B
calc

B
expt

(MeV) (MeV)
134Sn 5.98 6.03
135Sn 8.37 8.30
134Sb 12.74 12.84
135Sb 16.32 16.58
136Sb 18.81 19.47
134Te 20.81 20.57
135Te 23.82 23.83
136Te 28.26 28.60
137Te 31.15 31.55
136Xe 40.32 39.04
137Xe 43.83 43.06
138Xe 48.89 48.73

To start with, we report in Table I the calculated bind-
ing energies, relative to 132Sn, of the Sn, Sb, Te, and Xe
isotopes beyond N = 82 and compare them with the re-
sults from the mass measurements performed in [4] for
the first three kinds of isotopes and in [3] for the latter.
Note that the errors on the measured values are in the
order of keV and therefore are not given in Table I, where
the reported energies are rounded to tens of keV. We may
also mention that the values of the binding energies re-
ported in our previous papers (see, for instance, Refs.
[6, 18, 19]) for some of these nuclei di↵er slightly from
the present ones. This is because here we use a di↵er-
ent energy value for the the neutron 2p

1/2

level and the
mass excesses measured in [4]. From Table I, we see that
the experimental data are remarkably well reproduced by
the theory, the largest discrepancy not exceeding 3%. It
should be emphasized that for all 12 nuclei considered we
have used a unique Hamiltonian with a realistic two-body
e↵ective interaction containing no free parameters.

Making use of the binding energies of 134Sn, 134�136Te
and 136�138Xe reported in Table I and of those obtained
for 130Sn, 132�133Te and 134�135Xe, we have calculated
the neutron OES, as given by the three-point formula
[20, 21]

�(3)(N,Z) =
1

2
[B(N + 1, Z) +B(N � 1, Z)� 2B(N,Z)],

for the N = 81 isotones 131Sn, 133Te, and 135Xe and for
the N = 83 isotones 133Sn, 135Te, and 137Xe.

In Fig. 1 we compare the calculated OES values with
the experimental ones. We see that the agreement be-
tween theory and experiment is very good. In particular,
our calculations quantitatively describe the gap between
the N = 81 and 83 lines at Z = 50 as well as its decrease
when adding two and four protons, which confirms the
reliability of the various components of our e↵ective in-
teractions.

  ∆
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  N=83 Expt
  N=81 Calc
  N=81 Expt

50 52 54
0.0
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FIG. 1: (Color online) Calculated and experimental odd-even
staggering for the N = 81 and 83 isotones.

The drop of about 0.5 MeV in the observed OES for Sn
when crossing N = 82 is accounted for by the di↵erent
pairing properties of our e↵ective interaction for neutron
particles and holes with respect to the N = 82 closed
shell. In fact, the J⇡ = 0+ matrix elements, which are
the only ones entering the calculation of the ground-state
energies of 134Sn and 130Sn, are overall less attractive for
the former. For instance, the J⇡ = 0+ diagonal matrix
element for the (1f

7/2

)2 configuration, which dominates
the ground-state wave function of 134Sn, is �0.65 MeV,
namely about 0.5 MeV less attractive than that for the
(0h

11/2

)�2 configuration, whose role is very relevant to
the ground state of 130Sn. In previous works [5, 22] we
have investigated the microscopic origin of the paring
force above the N = 82 shell within our derivation of the
e↵ective interaction. We have analyzed the various per-
turbative contributions and found that the reduction of
the pairing component is due to the minor role played by
the one particle-one hole excitations, which are instead
responsible for a “normal” pairing below this shell. It is
worth mentioning that the di↵erence in the pairing force
across N = 82 was also shown to be crucial in reproduc-
ing the asymmetric behavior of the yrast 2+ state in tin
and tellurium isotopes with respect to N = 82 [23, 24].

When going to Te and Xe, the N = 81 and 83 lines
come closer to each other as a result of the proton-
neutron e↵ective interaction. The two lines would be
indeed parallel should one ignore this interaction. From
Fig. 1, we see that the p � n interaction has an oppo-
site e↵ect on the N = 81 and N = 83 isotones, which
is clearly related to its repulsive and attractive nature
in the particle-hole and particle-particle channel, respec-
tively. On the other hand, this e↵ect is not very large
either in 133,135Te or in 135,137Xe, since it results essen-
tially from the di↵erence between the contributions of the
p�n interaction to the energies of the odd and neighbor-
ing even isotopes. It makes, however, the OES almost
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TABLE I: Calculated and experimental binding energies B,
relative to 132Sn, of Sn, Sb, Te, and Xe isotopes.

Nucleus B
calc

B
expt

(MeV) (MeV)
134Sn 5.98 6.03
135Sn 8.37 8.30
134Sb 12.74 12.84
135Sb 16.32 16.58
136Sb 18.81 19.47
134Te 20.81 20.57
135Te 23.82 23.83
136Te 28.26 28.60
137Te 31.15 31.55
136Xe 40.32 39.04
137Xe 43.83 43.06
138Xe 48.89 48.73

To start with, we report in Table I the calculated bind-
ing energies, relative to 132Sn, of the Sn, Sb, Te, and Xe
isotopes beyond N = 82 and compare them with the re-
sults from the mass measurements performed in [4] for
the first three kinds of isotopes and in [3] for the latter.
Note that the errors on the measured values are in the
order of keV and therefore are not given in Table I, where
the reported energies are rounded to tens of keV. We may
also mention that the values of the binding energies re-
ported in our previous papers (see, for instance, Refs.
[6, 18, 19]) for some of these nuclei di↵er slightly from
the present ones. This is because here we use a di↵er-
ent energy value for the the neutron 2p

1/2

level and the
mass excesses measured in [4]. From Table I, we see that
the experimental data are remarkably well reproduced by
the theory, the largest discrepancy not exceeding 3%. It
should be emphasized that for all 12 nuclei considered we
have used a unique Hamiltonian with a realistic two-body
e↵ective interaction containing no free parameters.

Making use of the binding energies of 134Sn, 134�136Te
and 136�138Xe reported in Table I and of those obtained
for 130Sn, 132�133Te and 134�135Xe, we have calculated
the neutron OES, as given by the three-point formula
[20, 21]

�(3)(N,Z) =
1

2
[B(N + 1, Z) +B(N � 1, Z)� 2B(N,Z)],

for the N = 81 isotones 131Sn, 133Te, and 135Xe and for
the N = 83 isotones 133Sn, 135Te, and 137Xe.

In Fig. 1 we compare the calculated OES values with
the experimental ones. We see that the agreement be-
tween theory and experiment is very good. In particular,
our calculations quantitatively describe the gap between
the N = 81 and 83 lines at Z = 50 as well as its decrease
when adding two and four protons, which confirms the
reliability of the various components of our e↵ective in-
teractions.
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FIG. 1: (Color online) Calculated and experimental odd-even
staggering for the N = 81 and 83 isotones.

The drop of about 0.5 MeV in the observed OES for Sn
when crossing N = 82 is accounted for by the di↵erent
pairing properties of our e↵ective interaction for neutron
particles and holes with respect to the N = 82 closed
shell. In fact, the J⇡ = 0+ matrix elements, which are
the only ones entering the calculation of the ground-state
energies of 134Sn and 130Sn, are overall less attractive for
the former. For instance, the J⇡ = 0+ diagonal matrix
element for the (1f

7/2

)2 configuration, which dominates
the ground-state wave function of 134Sn, is �0.65 MeV,
namely about 0.5 MeV less attractive than that for the
(0h

11/2

)�2 configuration, whose role is very relevant to
the ground state of 130Sn. In previous works [5, 22] we
have investigated the microscopic origin of the paring
force above the N = 82 shell within our derivation of the
e↵ective interaction. We have analyzed the various per-
turbative contributions and found that the reduction of
the pairing component is due to the minor role played by
the one particle-one hole excitations, which are instead
responsible for a “normal” pairing below this shell. It is
worth mentioning that the di↵erence in the pairing force
across N = 82 was also shown to be crucial in reproduc-
ing the asymmetric behavior of the yrast 2+ state in tin
and tellurium isotopes with respect to N = 82 [23, 24].

When going to Te and Xe, the N = 81 and 83 lines
come closer to each other as a result of the proton-
neutron e↵ective interaction. The two lines would be
indeed parallel should one ignore this interaction. From
Fig. 1, we see that the p � n interaction has an oppo-
site e↵ect on the N = 81 and N = 83 isotones, which
is clearly related to its repulsive and attractive nature
in the particle-hole and particle-particle channel, respec-
tively. On the other hand, this e↵ect is not very large
either in 133,135Te or in 135,137Xe, since it results essen-
tially from the di↵erence between the contributions of the
p�n interaction to the energies of the odd and neighbor-
ing even isotopes. It makes, however, the OES almost
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TABLE I: Calculated and experimental binding energies B,
relative to 132Sn, of Sn, Sb, Te, and Xe isotopes.

Nucleus B
calc

B
expt

(MeV) (MeV)
134Sn 5.98 6.03
135Sn 8.37 8.30
134Sb 12.74 12.84
135Sb 16.32 16.58
136Sb 18.81 19.47
134Te 20.81 20.57
135Te 23.82 23.83
136Te 28.26 28.60
137Te 31.15 31.55
136Xe 40.32 39.04
137Xe 43.83 43.06
138Xe 48.89 48.73

To start with, we report in Table I the calculated bind-
ing energies, relative to 132Sn, of the Sn, Sb, Te, and Xe
isotopes beyond N = 82 and compare them with the re-
sults from the mass measurements performed in [4] for
the first three kinds of isotopes and in [3] for the latter.
Note that the errors on the measured values are in the
order of keV and therefore are not given in Table I, where
the reported energies are rounded to tens of keV. We may
also mention that the values of the binding energies re-
ported in our previous papers (see, for instance, Refs.
[6, 18, 19]) for some of these nuclei di↵er slightly from
the present ones. This is because here we use a di↵er-
ent energy value for the the neutron 2p

1/2

level and the
mass excesses measured in [4]. From Table I, we see that
the experimental data are remarkably well reproduced by
the theory, the largest discrepancy not exceeding 3%. It
should be emphasized that for all 12 nuclei considered we
have used a unique Hamiltonian with a realistic two-body
e↵ective interaction containing no free parameters.

Making use of the binding energies of 134Sn, 134�136Te
and 136�138Xe reported in Table I and of those obtained
for 130Sn, 132�133Te and 134�135Xe, we have calculated
the neutron OES, as given by the three-point formula
[20, 21]

�(3)(N,Z) =
1

2
[B(N + 1, Z) +B(N � 1, Z)� 2B(N,Z)],

for the N = 81 isotones 131Sn, 133Te, and 135Xe and for
the N = 83 isotones 133Sn, 135Te, and 137Xe.

In Fig. 1 we compare the calculated OES values with
the experimental ones. We see that the agreement be-
tween theory and experiment is very good. In particular,
our calculations quantitatively describe the gap between
the N = 81 and 83 lines at Z = 50 as well as its decrease
when adding two and four protons, which confirms the
reliability of the various components of our e↵ective in-
teractions.
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FIG. 1: (Color online) Calculated and experimental odd-even
staggering for the N = 81 and 83 isotones.

The drop of about 0.5 MeV in the observed OES for Sn
when crossing N = 82 is accounted for by the di↵erent
pairing properties of our e↵ective interaction for neutron
particles and holes with respect to the N = 82 closed
shell. In fact, the J⇡ = 0+ matrix elements, which are
the only ones entering the calculation of the ground-state
energies of 134Sn and 130Sn, are overall less attractive for
the former. For instance, the J⇡ = 0+ diagonal matrix
element for the (1f

7/2

)2 configuration, which dominates
the ground-state wave function of 134Sn, is �0.65 MeV,
namely about 0.5 MeV less attractive than that for the
(0h

11/2

)�2 configuration, whose role is very relevant to
the ground state of 130Sn. In previous works [5, 22] we
have investigated the microscopic origin of the paring
force above the N = 82 shell within our derivation of the
e↵ective interaction. We have analyzed the various per-
turbative contributions and found that the reduction of
the pairing component is due to the minor role played by
the one particle-one hole excitations, which are instead
responsible for a “normal” pairing below this shell. It is
worth mentioning that the di↵erence in the pairing force
across N = 82 was also shown to be crucial in reproduc-
ing the asymmetric behavior of the yrast 2+ state in tin
and tellurium isotopes with respect to N = 82 [23, 24].

When going to Te and Xe, the N = 81 and 83 lines
come closer to each other as a result of the proton-
neutron e↵ective interaction. The two lines would be
indeed parallel should one ignore this interaction. From
Fig. 1, we see that the p � n interaction has an oppo-
site e↵ect on the N = 81 and N = 83 isotones, which
is clearly related to its repulsive and attractive nature
in the particle-hole and particle-particle channel, respec-
tively. On the other hand, this e↵ect is not very large
either in 133,135Te or in 135,137Xe, since it results essen-
tially from the di↵erence between the contributions of the
p�n interaction to the energies of the odd and neighbor-
ing even isotopes. It makes, however, the OES almost
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TABLE I: Calculated and experimental binding energies B,
relative to 132Sn, of Sn, Sb, Te, and Xe isotopes.

Nucleus B
calc

B
expt

(MeV) (MeV)
134Sn 5.98 6.03
135Sn 8.37 8.30
134Sb 12.74 12.84
135Sb 16.32 16.58
136Sb 18.81 19.47
134Te 20.81 20.57
135Te 23.82 23.83
136Te 28.26 28.60
137Te 31.15 31.55
136Xe 40.32 39.04
137Xe 43.83 43.06
138Xe 48.89 48.73

To start with, we report in Table I the calculated bind-
ing energies, relative to 132Sn, of the Sn, Sb, Te, and Xe
isotopes beyond N = 82 and compare them with the re-
sults from the mass measurements performed in [4] for
the first three kinds of isotopes and in [3] for the latter.
Note that the errors on the measured values are in the
order of keV and therefore are not given in Table I, where
the reported energies are rounded to tens of keV. We may
also mention that the values of the binding energies re-
ported in our previous papers (see, for instance, Refs.
[6, 18, 19]) for some of these nuclei di↵er slightly from
the present ones. This is because here we use a di↵er-
ent energy value for the the neutron 2p

1/2

level and the
mass excesses measured in [4]. From Table I, we see that
the experimental data are remarkably well reproduced by
the theory, the largest discrepancy not exceeding 3%. It
should be emphasized that for all 12 nuclei considered we
have used a unique Hamiltonian with a realistic two-body
e↵ective interaction containing no free parameters.

Making use of the binding energies of 134Sn, 134�136Te
and 136�138Xe reported in Table I and of those obtained
for 130Sn, 132�133Te and 134�135Xe, we have calculated
the neutron OES, as given by the three-point formula
[20, 21]

�(3)(N,Z) =
1

2
[B(N + 1, Z) +B(N � 1, Z)� 2B(N,Z)],

for the N = 81 isotones 131Sn, 133Te, and 135Xe and for
the N = 83 isotones 133Sn, 135Te, and 137Xe.

In Fig. 1 we compare the calculated OES values with
the experimental ones. We see that the agreement be-
tween theory and experiment is very good. In particular,
our calculations quantitatively describe the gap between
the N = 81 and 83 lines at Z = 50 as well as its decrease
when adding two and four protons, which confirms the
reliability of the various components of our e↵ective in-
teractions.
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FIG. 1: (Color online) Calculated and experimental odd-even
staggering for the N = 81 and 83 isotones.

The drop of about 0.5 MeV in the observed OES for Sn
when crossing N = 82 is accounted for by the di↵erent
pairing properties of our e↵ective interaction for neutron
particles and holes with respect to the N = 82 closed
shell. In fact, the J⇡ = 0+ matrix elements, which are
the only ones entering the calculation of the ground-state
energies of 134Sn and 130Sn, are overall less attractive for
the former. For instance, the J⇡ = 0+ diagonal matrix
element for the (1f

7/2

)2 configuration, which dominates
the ground-state wave function of 134Sn, is �0.65 MeV,
namely about 0.5 MeV less attractive than that for the
(0h

11/2

)�2 configuration, whose role is very relevant to
the ground state of 130Sn. In previous works [5, 22] we
have investigated the microscopic origin of the paring
force above the N = 82 shell within our derivation of the
e↵ective interaction. We have analyzed the various per-
turbative contributions and found that the reduction of
the pairing component is due to the minor role played by
the one particle-one hole excitations, which are instead
responsible for a “normal” pairing below this shell. It is
worth mentioning that the di↵erence in the pairing force
across N = 82 was also shown to be crucial in reproduc-
ing the asymmetric behavior of the yrast 2+ state in tin
and tellurium isotopes with respect to N = 82 [23, 24].

When going to Te and Xe, the N = 81 and 83 lines
come closer to each other as a result of the proton-
neutron e↵ective interaction. The two lines would be
indeed parallel should one ignore this interaction. From
Fig. 1, we see that the p � n interaction has an oppo-
site e↵ect on the N = 81 and N = 83 isotones, which
is clearly related to its repulsive and attractive nature
in the particle-hole and particle-particle channel, respec-
tively. On the other hand, this e↵ect is not very large
either in 133,135Te or in 135,137Xe, since it results essen-
tially from the di↵erence between the contributions of the
p�n interaction to the energies of the odd and neighbor-
ing even isotopes. It makes, however, the OES almost
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TABLE I: Calculated and experimental binding energies B,
relative to 132Sn, of Sn, Sb, Te, and Xe isotopes.

Nucleus B
calc

B
expt

(MeV) (MeV)
134Sn 5.98 6.03
135Sn 8.37 8.30
134Sb 12.74 12.84
135Sb 16.32 16.58
136Sb 18.81 19.47
134Te 20.81 20.57
135Te 23.82 23.83
136Te 28.26 28.60
137Te 31.15 31.55
136Xe 40.32 39.04
137Xe 43.83 43.06
138Xe 48.89 48.73

To start with, we report in Table I the calculated bind-
ing energies, relative to 132Sn, of the Sn, Sb, Te, and Xe
isotopes beyond N = 82 and compare them with the re-
sults from the mass measurements performed in [4] for
the first three kinds of isotopes and in [3] for the latter.
Note that the errors on the measured values are in the
order of keV and therefore are not given in Table I, where
the reported energies are rounded to tens of keV. We may
also mention that the values of the binding energies re-
ported in our previous papers (see, for instance, Refs.
[6, 18, 19]) for some of these nuclei di↵er slightly from
the present ones. This is because here we use a di↵er-
ent energy value for the the neutron 2p

1/2

level and the
mass excesses measured in [4]. From Table I, we see that
the experimental data are remarkably well reproduced by
the theory, the largest discrepancy not exceeding 3%. It
should be emphasized that for all 12 nuclei considered we
have used a unique Hamiltonian with a realistic two-body
e↵ective interaction containing no free parameters.

Making use of the binding energies of 134Sn, 134�136Te
and 136�138Xe reported in Table I and of those obtained
for 130Sn, 132�133Te and 134�135Xe, we have calculated
the neutron OES, as given by the three-point formula
[20, 21]

�(3)(N,Z) =
1

2
[B(N + 1, Z) +B(N � 1, Z)� 2B(N,Z)],

for the N = 81 isotones 131Sn, 133Te, and 135Xe and for
the N = 83 isotones 133Sn, 135Te, and 137Xe.

In Fig. 1 we compare the calculated OES values with
the experimental ones. We see that the agreement be-
tween theory and experiment is very good. In particular,
our calculations quantitatively describe the gap between
the N = 81 and 83 lines at Z = 50 as well as its decrease
when adding two and four protons, which confirms the
reliability of the various components of our e↵ective in-
teractions.
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FIG. 1: (Color online) Calculated and experimental odd-even
staggering for the N = 81 and 83 isotones.

The drop of about 0.5 MeV in the observed OES for Sn
when crossing N = 82 is accounted for by the di↵erent
pairing properties of our e↵ective interaction for neutron
particles and holes with respect to the N = 82 closed
shell. In fact, the J⇡ = 0+ matrix elements, which are
the only ones entering the calculation of the ground-state
energies of 134Sn and 130Sn, are overall less attractive for
the former. For instance, the J⇡ = 0+ diagonal matrix
element for the (1f

7/2

)2 configuration, which dominates
the ground-state wave function of 134Sn, is �0.65 MeV,
namely about 0.5 MeV less attractive than that for the
(0h

11/2

)�2 configuration, whose role is very relevant to
the ground state of 130Sn. In previous works [5, 22] we
have investigated the microscopic origin of the paring
force above the N = 82 shell within our derivation of the
e↵ective interaction. We have analyzed the various per-
turbative contributions and found that the reduction of
the pairing component is due to the minor role played by
the one particle-one hole excitations, which are instead
responsible for a “normal” pairing below this shell. It is
worth mentioning that the di↵erence in the pairing force
across N = 82 was also shown to be crucial in reproduc-
ing the asymmetric behavior of the yrast 2+ state in tin
and tellurium isotopes with respect to N = 82 [23, 24].

When going to Te and Xe, the N = 81 and 83 lines
come closer to each other as a result of the proton-
neutron e↵ective interaction. The two lines would be
indeed parallel should one ignore this interaction. From
Fig. 1, we see that the p � n interaction has an oppo-
site e↵ect on the N = 81 and N = 83 isotones, which
is clearly related to its repulsive and attractive nature
in the particle-hole and particle-particle channel, respec-
tively. On the other hand, this e↵ect is not very large
either in 133,135Te or in 135,137Xe, since it results essen-
tially from the di↵erence between the contributions of the
p�n interaction to the energies of the odd and neighbor-
ing even isotopes. It makes, however, the OES almost
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u Test of the optimized chiral potential 

u Role of genuine and effective three-body 
forces 

u Microscopic origin of the properties of the 
shell-model interaction 
	
  
u Further studies of nuclei far from 
stability 
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