

Nuclear electromagnetic processes in ChEFT

Luca Girlanda

Università del Salento & INFN Lecce

work with: L.E. Marcucci, S. Pastore, M. Piarulli, R. Schiavilla, M. Viviani

S. Pastore, et al. Phys. Rev. C80 (2009) 034004

L. Girlanda et al. Phys. Rev. Lett. 105 (2010) 232502

A D A D A D A

S. Pastore et al. Phys. Rev. C84 (2011) 024001

M. Piarulli et al. Phys. Rev. C87 (2013) 014006

L. Girlanda (Univ. Salento)

Outline

- Noether currents in ChEFT
- Calculational framework: recoil-corrected TOPT
- Anatomy of charge and current operators up to 1-loop
- Strategies to fix the LECs
- ▶ Applications: elastic electron scattering on A = 2, 3 systems
- Summary and conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

 Γ_c generates connected Green functions of quark bilinears

$$\mathrm{e}^{\Gamma_{c}[\mathcal{V}_{\mu},\mathcal{A}_{\mu},\mathcal{S},\mathcal{P}]} = \int [\mathcal{D}\mu]_{\mathrm{QCD}} \mathrm{e}^{i\int dx \{\mathcal{L}_{YM} + \bar{q}[i\not\!\!D + \mathcal{V} + \gamma_{5}\mathcal{A} - \mathcal{S} + i\gamma_{5}\mathcal{P}]q\}}$$

If $S = 0 \Longrightarrow$ (global) chiral symmetry: $q_L \rightarrow g_L q_L$, $q_R \rightarrow g_R q_R$

 Γ_c generates connected Green functions of quark bilinears

$$\mathrm{e}^{\Gamma_{c}[\mathcal{V}_{\mu},\mathcal{A}_{\mu},\mathcal{S},\mathcal{P}]} = \int [\mathcal{D}\mu]_{\mathrm{QCD}} \mathrm{e}^{i\int d\mathsf{x}\{\mathcal{L}_{YM}+\bar{q}[i\not\!\!D+\not\!\!V+\gamma_{5}\mathcal{A}-\mathcal{S}+i\gamma_{5}\mathcal{P}]q\}}$$

If $S = 0 \implies$ (global) chiral symmetry: $q_L \rightarrow g_L q_L$, $q_R \rightarrow g_R q_R$ Chiral Ward Identities can be obtained in the following way: 1. Promote g_L and g_R to *local* transformations

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

 Γ_c generates connected Green functions of quark bilinears

$$\mathrm{e}^{\Gamma_{c}[\mathcal{V}_{\mu},\mathcal{A}_{\mu},\mathcal{S},\mathcal{P}]} = \int [\mathcal{D}\mu]_{\mathrm{QCD}} \mathrm{e}^{i\int dx \{\mathcal{L}_{YM} + \bar{q}[i\not\!\!D + \mathcal{V} + \gamma_{5}\mathcal{A} - \mathcal{S} + i\gamma_{5}\mathcal{P}]q\}}$$

If $S = 0 \implies$ (global) chiral symmetry: $q_L \rightarrow g_L q_L$, $q_R \rightarrow g_R q_R$ Chiral Ward Identities can be obtained in the following way:

- 1. Promote g_L and g_R to *local* transformations
- 2. Take the sources to transform as gauge fields

$$\begin{aligned} \mathcal{V}_{\mu} + \mathcal{A}_{\mu} &\to \quad \mathcal{V}'_{\mu} + \mathcal{A}'_{\mu} = g_{R}(x) \left(\mathcal{V}_{\mu} + \mathcal{A}_{\mu} \right) g_{L}^{\dagger}(x) + ig_{R}(x) \partial_{\mu} g_{R}^{\dagger}(x) \\ \mathcal{V}_{\mu} - \mathcal{A}_{\mu} &\to \quad \mathcal{V}'_{\mu} - \mathcal{A}'_{\mu} = g_{L}(x) \left(\mathcal{V}_{\mu} - \mathcal{A}_{\mu} \right) g_{L}^{\dagger}(x) + ig_{L}(x) \partial_{\mu} g_{L}^{\dagger}(x) \\ \mathcal{S} + i\mathcal{P} &\to \quad \mathcal{S}' + i\mathcal{P}' = g_{R}(x) \left(\mathcal{S} + i\mathcal{P} \right) g_{L}^{\dagger}(x) \\ \mathcal{S} - i\mathcal{P} &\to \quad \mathcal{S}' - i\mathcal{P}' = g_{L}(x) \left(\mathcal{S} + i\mathcal{P} \right) g_{R}^{\dagger}(x) \end{aligned}$$

L. Girlanda (Univ. Salento)

▲日▼ ▲冊▼ ▲ヨ▼ ▲ヨ▼ ヨー つぬの

 Γ_c generates connected Green functions of quark bilinears

$$\mathrm{e}^{\Gamma_{c}[\mathcal{V}_{\mu},\mathcal{A}_{\mu},\mathcal{S},\mathcal{P}]} = \int [\mathcal{D}\mu]_{\mathrm{QCD}} \mathrm{e}^{i\int dx \{\mathcal{L}_{YM} + \bar{q}[i\not\!\!D + \mathcal{V} + \gamma_{5}\mathcal{A} - \mathcal{S} + i\gamma_{5}\mathcal{P}]q\}}$$

If $S = 0 \implies$ (global) chiral symmetry: $q_L \rightarrow g_L q_L$, $q_R \rightarrow g_R q_R$ Chiral Ward Identities can be obtained in the following way:

- 1. Promote g_L and g_R to local transformations
- 2. Take the sources to transform as gauge fields

$$\begin{aligned} \mathcal{V}_{\mu} + \mathcal{A}_{\mu} &\to \quad \mathcal{V}'_{\mu} + \mathcal{A}'_{\mu} = g_{R}(x) \left(\mathcal{V}_{\mu} + \mathcal{A}_{\mu} \right) g_{R}^{\dagger}(x) + ig_{R}(x) \partial_{\mu} g_{R}^{\dagger}(x) \\ \mathcal{V}_{\mu} - \mathcal{A}_{\mu} &\to \quad \mathcal{V}'_{\mu} - \mathcal{A}'_{\mu} = g_{L}(x) \left(\mathcal{V}_{\mu} - \mathcal{A}_{\mu} \right) g_{L}^{\dagger}(x) + ig_{L}(x) \partial_{\mu} g_{L}^{\dagger}(x) \\ \mathcal{S} + i\mathcal{P} &\to \quad \mathcal{S}' + i\mathcal{P}' = g_{R}(x) \left(\mathcal{S} + i\mathcal{P} \right) g_{L}^{\dagger}(x) \\ \mathcal{S} - i\mathcal{P} &\to \quad \mathcal{S}' - i\mathcal{P}' = g_{L}(x) \left(\mathcal{S} + i\mathcal{P} \right) g_{R}^{\dagger}(x) \end{aligned}$$

 \implies it amounts to local transformations of the quark fields, $q_L \rightarrow g_L(x)q_L, q_R \rightarrow g_R(x)q_R$, that leave Γ_c (almost) invariant

$$\mathrm{e}^{\Gamma_{c}[\mathcal{V}_{\mu},\mathcal{A}_{\mu},\mathcal{S},\mathcal{P}|\bar{\eta}]} = \int [\mathcal{D}\mathcal{U}\mathcal{D}\psi] \mathrm{e}^{i\int dx \{\mathcal{L}_{\mathrm{eff}}[\mathcal{U},\psi;\mathcal{V}_{\mu},\mathcal{A}_{\mu},\mathcal{S},\mathcal{P}] + \bar{\eta}\psi\}}$$

with $\mathcal{L}_{\mathrm{eff}}$ including all possible chiral invariant terms involving pions (U) and nucleons (ψ)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

$$\mathrm{e}^{\mathsf{\Gamma}_{c}[\mathcal{V}_{\mu},\mathcal{A}_{\mu},\mathcal{S},\mathcal{P}|\bar{\eta}]} = \int [\mathcal{D}\mathcal{U}\mathcal{D}\psi] \mathrm{e}^{i\int d\mathsf{x}\{\mathcal{L}_{\mathrm{eff}}[\mathcal{U},\psi;\mathcal{V}_{\mu},\mathcal{A}_{\mu},\mathcal{S},\mathcal{P}]+\bar{\eta}\psi\}}$$

with \mathcal{L}_{eff} including all possible chiral invariant terms involving pions (U) and nucleons (ψ) At the end the functional is to be evaluated at

$$\mathcal{S} = \left(egin{array}{cc} m_u & \ & m_d \end{array}
ight), \quad \mathcal{V}_\mu = e A_\mu \left(egin{array}{cc} m_u & \ & m_d \end{array}
ight), \ldots$$

L. Girlanda (Univ. Salento)

イロト 不得 トイヨト イヨト 二日

$$\mathrm{e}^{\Gamma_{c}[\mathcal{V}_{\mu},\mathcal{A}_{\mu},\mathcal{S},\mathcal{P}|\bar{\eta}]} = \int [\mathcal{D}\mathcal{U}\mathcal{D}\psi] \mathrm{e}^{i\int dx \{\mathcal{L}_{\mathrm{eff}}[\mathcal{U},\psi;\mathcal{V}_{\mu},\mathcal{A}_{\mu},\mathcal{S},\mathcal{P}] + \bar{\eta}\psi\}}$$

with \mathcal{L}_{eff} including all possible chiral invariant terms involving pions (U) and nucleons (ψ) At the end the functional is to be evaluated at

$$\mathcal{S} = \left(egin{array}{cc} m_u & \ & m_d \end{array}
ight), \quad \mathcal{V}_\mu = e A_\mu \left(egin{array}{cc} m_u & \ & m_d \end{array}
ight), \ldots$$

Power counting is the organizing principle -it works because of chiral symmetry: Goldstone bosons have derivative interactions

$$\mathrm{e}^{\mathsf{\Gamma}_{\mathsf{c}}[\mathcal{V}_{\mu},\mathcal{A}_{\mu},\mathcal{S},\mathcal{P}|\bar{\eta}]} = \int [\mathcal{D}\mathcal{U}\mathcal{D}\psi] \mathrm{e}^{i\int d\mathsf{x}\{\mathcal{L}_{\mathrm{eff}}[\mathcal{U},\psi;\mathcal{V}_{\mu},\mathcal{A}_{\mu},\mathcal{S},\mathcal{P}]+\bar{\eta}\psi\}}$$

with \mathcal{L}_{eff} including all possible chiral invariant terms involving pions (U) and nucleons (ψ) At the end the functional is to be evaluated at

$$\mathcal{S} = \left(egin{array}{cc} m_u & \ & m_d \end{array}
ight), \quad \mathcal{V}_\mu = e A_\mu \left(egin{array}{cc} m_u & \ & m_d \end{array}
ight), \ldots$$

Power counting is the organizing principle

-it works because of chiral symmetry: Goldstone bosons have derivative interactions

-it explains the hierarchy of nuclear forces and gives rise to realistic potentials (Entem-Machleidt, Epelbaum-Gloeckle-Meissner)

History

nuclear electroweak currents were addressed immediately after Weinberg's proposal, and used in the hybrid approach

History

nuclear electroweak currents were addressed immediately after Weinberg's proposal, and used in the hybrid approach (some) related work on electromagnetic processes:

- Park, Min, Rho, 1996 application to hybrid calculations in A=2-4 systems (Song, Lazauskas, Park, 2009-2011)
- Meissner, Walzl, 2001; D. Phillips 2003 isoscalar component, applied to deuteron static properties and form factors
- Koelling, Epelbaum, Krebs, Meissner, 2009-2011 within the unitary transformation formalisms; hybrid application to d and ³He photodisintegration (Rozpedzik et al, 2011)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Power counting Consider the *NN* amplitude

$$\langle f|T|i\rangle = \langle f|H_I \sum_n \left(\frac{1}{E_i - H_0 + i\epsilon}H_I\right)^{N-1}|i\rangle$$

a generic (reducible or irreducible) contribution with N vertices will scale like

$$\prod_{i=1}^{N} p^{\nu_i} \bigg] p^{-(N-N_K-1)} p^{-2N_K}$$

out of the N-1 energy denominators, N_K are purely nucleonic (small) the remaining (large) energy denominators can be further expanded in E/ω_{π}

$$rac{1}{E_i-E_I-\omega_\pi}\sim -rac{1}{\omega_\pi}\left[1+rac{E_i-E_I}{\omega_\pi}+...
ight]$$

L. Girlanda (Univ. Salento)

Power counting Consider the *NN* amplitude

$$\langle f|T|i\rangle = \langle f|H_I \sum_n \left(\frac{1}{E_i - H_0 + i\epsilon}H_I\right)^{N-1}|i\rangle$$

a generic (reducible or irreducible) contribution with N vertices will scale like

$$\prod_{i=1}^{N} p^{\nu_i} \bigg] p^{-(N-N_K-1)} p^{-2N_K}$$

out of the N-1 energy denominators, N_K are purely nucleonic (small) the remaining (large) energy denominators can be further expanded in E/ω_{π}

$$rac{1}{{{ extsf{E}}_{i}}-{{ extsf{E}}_{l}}-{{\omega }_{\pi }}}\sim -rac{1}{{{\omega }_{\pi }}}\left[1+rac{{{ extsf{E}}_{i}}-{{ extsf{E}}_{l}}}{{{\omega }_{\pi }}}+...
ight]$$

at the end

$$T = T^{(0)} + T^{(1)} + T^{(2)} + ..., \quad T^{(n)} \sim O(p^n)$$

(日) (雪) (日) (日)

Power counting Consider the *NN* amplitude

$$\langle f|T|i\rangle = \langle f|H_I \sum_n \left(\frac{1}{E_i - H_0 + i\epsilon}H_I\right)^{N-1}|i\rangle$$

a generic (reducible or irreducible) contribution with N vertices will scale like

$$\prod_{i=1}^{N} p^{\nu_i} \bigg] p^{-(N-N_K-1)} p^{-2N_K}$$

out of the N-1 energy denominators, N_K are purely nucleonic (small) the remaining (large) energy denominators can be further expanded in E/ω_{π}

$$rac{1}{{{ extsf{E}}_{i}}-{{ extsf{E}}_{l}}-{{\omega }_{\pi }}}\sim -rac{1}{{{\omega }_{\pi }}}\left[1+rac{{{ extsf{E}}_{i}}-{{ extsf{E}}_{l}}}{{{\omega }_{\pi }}}+...
ight]$$

at the end

$$T = T^{(0)} + T^{(1)} + T^{(2)} + ..., \quad T^{(n)} \sim O(p^n)$$

We can define $v = v^{(0)} + v^{(1)} + \dots$ such that

$$T = v + vG_0v + vG_0vG_0v + \dots$$

order by order in the chiral expansion

L. Girlanda (Univ. Salento)

From amplitudes to potentials Solving for $v^{(n)}$ we have

$$\begin{split} \mathbf{v}^{(0)} &= & \mathcal{T}^{(0)} \;, \\ \mathbf{v}^{(1)} &= & \mathcal{T}^{(1)} - \left[\mathbf{v}^{(0)} \; \mathbf{G}_0 \; \mathbf{v}^{(0)} \right] \;, \\ \mathbf{v}^{(2)} &= & \mathcal{T}^{(2)} - \left[\mathbf{v}^{(0)} \; \mathbf{G}_0 \; \mathbf{v}^{(0)} \; \mathbf{G}_0 \; \mathbf{v}^{(0)} \right] \\ &\quad - \left[\mathbf{v}^{(1)} \; \mathbf{G}_0 \; \mathbf{v}^{(0)} \; + \mathbf{v}^{(0)} \; \mathbf{G}_0 \; \mathbf{v}^{(1)} \right] \;, \\ \mathbf{v}^{(3)} &= & \mathcal{T}^{(3)} - \left[\mathbf{v}^{(0)} \; \mathbf{G}_0 \; \mathbf{v}^{(0)} \; \mathbf{G}_0 \; \mathbf{v}^{(0)} \right] \\ &\quad - \left[\mathbf{v}^{(1)} \; \mathbf{G}_0 \; \mathbf{v}^{(0)} \; \mathbf{G}_0 \; \mathbf{v}^{(0)} \; + \operatorname{permutations} \right] \\ &\quad - \left[\mathbf{v}^{(2)} \; \mathbf{G}_0 \; \mathbf{v}^{(0)} \; + \mathbf{v}^{(0)} \; \mathbf{G}_0 \; \mathbf{v}^{(2)} \right] - \left[\mathbf{v}^{(1)} \; \mathbf{G}_0 \; \mathbf{v}^{(1)} \right] \;. \end{split}$$

where $G_0 \sim p^{-2} d^3 p \sim O(p)$

L. Girlanda (Univ. Salento)

From amplitudes to potentials Solving for $v^{(n)}$ we have

$$\begin{split} v^{(0)} &= \mathcal{T}^{(0)} , \\ v^{(1)} &= \mathcal{T}^{(1)} - \left[v^{(0)} \, G_0 \, v^{(0)} \right] , \\ v^{(2)} &= \mathcal{T}^{(2)} - \left[v^{(0)} \, G_0 \, v^{(0)} \, G_0 \, v^{(0)} \right] \\ &- \left[v^{(1)} \, G_0 \, v^{(0)} + v^{(0)} \, G_0 \, v^{(1)} \right] , \\ v^{(3)} &= \mathcal{T}^{(3)} - \left[v^{(0)} \, G_0 \, v^{(0)} \, G_0 \, v^{(0)} \right] \\ &- \left[v^{(1)} \, G_0 \, v^{(0)} \, G_0 \, v^{(0)} + \text{permutations} \right] \\ &- \left[v^{(2)} \, G_0 \, v^{(0)} + v^{(0)} \, G_0 \, v^{(2)} \right] - \left[v^{(1)} \, G_0 \, v^{(1)} \right] . \end{split}$$

where $G_0 \sim p^{-2} d^3 p \sim O(p)$

- this procedure allows to systematically subtract the terms due to the iteration of the dynamical equation
- nevertheless it is ambiguous, because we need the $v^{(n)}$ off shell

Off-shell ambiguity

There exists a whole class of 2nd order recoil corrections to OPE which are equivalent on shell, parametrized by a parameter ν (Friar 1980)

$$\begin{aligned} v_{RC}^{(2)}(\nu = 0) &= v_{\pi}^{(0)}(\mathbf{k}) \frac{(E_1' - E_1)^2 + (E_2' - E_2)^2}{2\omega_k^2} \\ v_{RC}^{(2)}(\nu = 1) &= -v_{\pi}^{(0)}(\mathbf{k}) \frac{(E_1' - E_1)(E_2' - E_2)}{\omega_k^2} \end{aligned}$$

Off-shell ambiguity

There exists a whole class of 2nd order recoil corrections to OPE which are equivalent on shell, parametrized by a parameter ν (Friar 1980)

$$\begin{aligned} v_{RC}^{(2)}(\nu = \mathbf{0}) &= v_{\pi}^{(0)}(\mathbf{k}) \frac{(E_1' - E_1)^2 + (E_2' - E_2)^2}{2\omega_k^2} \\ v_{RC}^{(2)}(\nu = \mathbf{1}) &= -v_{\pi}^{(0)}(\mathbf{k}) \frac{(E_1' - E_1)(E_2' - E_2)}{\omega_k^2} \end{aligned}$$

The off-shell ambiguities will affect successive terms $v^{(n)}$: for each $v^{(2)}(\nu)$ there is a corresponding $v^{(3)}(\nu)$ However, the different choices are related by a unitary transformation,

$$H(\nu) = e^{-iU(\nu)}H(\nu = 0)e^{iU(\nu)}$$

with $U = U^{(0)} + U^{(1)} + ...$ explicitly

$$i U^{(0)}(\nu) = -\nu \frac{v_{\pi}^{(0)}(\mathbf{p}'-\mathbf{p})}{(\mathbf{p}'-\mathbf{p})^2 + m_{\pi}^2} \frac{p'^2 - p^2}{2 m_N}, \quad U^{(1)}(\nu) = -\frac{\nu}{2} \int_{\mathbf{s}} \frac{v_{\pi}^{(0)}(\mathbf{p}'-\mathbf{s})v_{\pi}^{(0)}(\mathbf{s}-\mathbf{p})}{(\mathbf{p}'-\mathbf{s})^2 + m_{\pi}^2}$$

thus extending the unitary equivalence to the $TPEP_{P}$ (P, P) (P, P)

L. Girlanda (Univ. Salento)

Nuclear electromagnetic processes in ChEFT

Analogously for the electromagnetic transition operator $v_{\gamma} = A^0 \rho - \mathbf{A} \cdot \mathbf{j}$ we start by expanding the amplitude $T_{\gamma} = T_{\gamma}^{(-3)} + T_{\gamma}^{(-2)} + \dots$ and then match order by order

$$\begin{split} v_{\gamma}^{(-3)} &= \ T_{\gamma}^{(-3)} \\ v_{\gamma}^{(-2)} &= \ T_{\gamma}^{(-2)} - \left[v_{\gamma}^{(-3)} \ G_0 \ v^{(0)} + v^{(0)} \ G_0 \ v_{\gamma}^{(-3)} \right] , \\ v_{\gamma}^{(-1)} &= \ T_{\gamma}^{(-1)} - \left[v_{\gamma}^{(-3)} \ G_0 \ v^{(0)} \ G_0 \ v^{(0)} + ... \right] - \left[v_{\gamma}^{(-2)} \ G_0 \ v^{(0)} + v^{(0)} \ G_0 \ v_{\gamma}^{(-2)} \right] , \\ v_{\gamma}^{(0)} &= \ T_{\gamma}^{(0)} - \left[v_{\gamma}^{(-3)} \ G_0 \ v^{(0)} \ G_0 \ v^{(0)} \ G_0 \ v^{(0)} + ... \right] - \left[v_{\gamma}^{(-2)} \ G_0 \ v^{(0)} \ G_0 \ v^{(0)} + ... \right] \\ &- \left[v_{\gamma}^{(-1)} \ G_0 \ v^{(0)} + v^{(0)} \ G_0 \ v_{\gamma}^{(-1)} \right] - \left[v_{\gamma}^{(-3)} \ G_0 \ v^{(2)} + v^{(2)} \ G_0 \ v_{\gamma}^{(-3)} \right] \\ v_{\gamma}^{(1)} &= \ T_{\gamma}^{(1)} - \left[v_{\gamma}^{(-3)} \ G_0 \ v^{(0)} \ G_0 \ v^{(0)} \ G_0 \ v^{(0)} + ... \right] \\ &- \left[v_{\gamma}^{(-2)} \ G_0 \ v^{(0)} \ G_0 \ v^{(0)} \ G_0 \ v^{(0)} + ... \right] - \left[v_{\gamma}^{(-1)} \ G_0 \ v^{(0)} \ G_0 \ v^{(0)} + ... \right] \\ &- \left[v_{\gamma}^{(0)} \ G_0 \ v^{(0)} + v^{(0)} \ G_0 \ v_{\gamma}^{(0)} \right] - \left[v_{\gamma}^{(-3)} \ G_0 \ v^{(0)} \ G_0 \ v^{(0)} + ... \right] \\ &- \left[v_{\gamma}^{(-3)} \ G_0 \ v^{(3)} + v^{(3)} \ G_0 \ v_{\gamma}^{(-3)} \right] , \end{split}$$

L. Girlanda (Univ. Salento)

Nuclear electromagnetic processes in ChEFT

イロト 不得 トイヨト イヨト 二日

Analogously for the electromagnetic transition operator $v_{\gamma} = A^0 \rho - \mathbf{A} \cdot \mathbf{j}$ we start by expanding the amplitude $T_{\gamma} = T_{\gamma}^{(-3)} + T_{\gamma}^{(-2)} + \dots$ and then match order by order

$$\begin{split} v_{\gamma}^{(-3)} &= T_{\gamma}^{(-3)} \\ v_{\gamma}^{(-2)} &= T_{\gamma}^{(-2)} - \left[v_{\gamma}^{(-3)} \, G_0 \, v^{(0)} + v^{(0)} \, G_0 \, v_{\gamma}^{(-3)} \right] , \\ v_{\gamma}^{(-1)} &= T_{\gamma}^{(-1)} - \left[v_{\gamma}^{(-3)} \, G_0 \, v^{(0)} \, G_0 \, v^{(0)} + \ldots \right] - \left[v_{\gamma}^{(-2)} \, G_0 \, v^{(0)} + v^{(0)} \, G_0 \, v_{\gamma}^{(-2)} \right] , \\ v_{\gamma}^{(0)} &= T_{\gamma}^{(0)} - \left[v_{\gamma}^{(-3)} \, G_0 \, v^{(0)} \, G_0 \, v^{(0)} \, G_0 \, v^{(0)} + \ldots \right] - \left[v_{\gamma}^{(-2)} \, G_0 \, v^{(0)} \, G_0 \, v^{(0)} + \ldots \right] \\ &- \left[v_{\gamma}^{(-1)} \, G_0 \, v^{(0)} + v^{(0)} \, G_0 \, v_{\gamma}^{(-1)} \right] - \left[v_{\gamma}^{(-3)} \, G_0 \, v^{(2)} + v^{(2)} \, G_0 \, v_{\gamma}^{(-3)} \right] \\ v_{\gamma}^{(1)} &= T_{\gamma}^{(1)} - \left[v_{\gamma}^{(-3)} \, G_0 \, v^{(0)} \, G_0 \, v^{(0)} \, G_0 \, v^{(0)} + \ldots \right] \\ &- \left[v_{\gamma}^{(0)} \, G_0 \, v^{(0)} + v^{(0)} \, G_0 \, v^{(0)} + \ldots \right] - \left[v_{\gamma}^{(-1)} \, G_0 \, v^{(0)} \, G_0 \, v^{(0)} + \ldots \right] \\ &- \left[v_{\gamma}^{(-3)} \, G_0 \, v^{(3)} + v^{(3)} \, G_0 \, v_{\gamma}^{(-3)} \right] , \end{split}$$

At this order, the offshell ambiguity in ν affects only the charge operator However, $\rho(\nu) = e^{-iU(\nu)}\rho(\nu = 0)e^{iU(\nu)}$ with the same $U(\nu)$ as before

- I-body operator (convection current and spin-magnetization)
- Two-body currents (seagull and pion-in-flight) only isovector
- Relativistic corrections to the 1-body operator

(人間) トイヨト イヨト

I-body operator (convection current and spin-magnetization)

- Two-body currents (seagull and pion-in-flight) only isovector
- Relativistic corrections to the 1-body operator

At N3LO, O(eQ)

Two-pion exchange diagrams - only isovector

L. Girlanda (Univ. Salento)

Nuclear electromagnetic processes in ChEFT

 $\mathcal{I} \subset \mathcal{I} \subset \mathcal{I}$ Contact terms from the subleading Lagrangian

There are two classes of contributions:

- terms from the gauging of the subleading two nucleon contact Lagrangian (minimal substitution) these can be expressed in terms of the same LECs entering the NN potential
- terms involving the electromagnetic field strenght tensor 1 isoscalar and 1 isovector

$$\mathbf{j}^{(1)} = -i \, e \Big[C_{15}' \, \sigma_1 + C_{16}' \, (au_{1,z} - au_{2,z}) \, \sigma_1 \Big] imes \mathbf{q} + 1 \rightleftharpoons 2 \; ,$$

 $\mathcal{I} \subset \mathcal{I} \setminus \mathcal{I}$ Contact terms from the subleading Lagrangian

There are two classes of contributions:

- terms from the gauging of the subleading two nucleon contact Lagrangian (minimal substitution) these can be expressed in terms of the same LECs entering the NN potential
- terms involving the electromagnetic field strenght tensor 1 isoscalar and 1 isovector

$$\mathbf{j}^{(1)} = -i \, e \bigg[C_{15}' \, \boldsymbol{\sigma}_1 + C_{16}' \left(\tau_{1,z} - \tau_{2,z} \right) \boldsymbol{\sigma}_1 \bigg] \times \mathbf{q} + 1 \rightleftharpoons 2 \, ,$$

Subleading corrections to one pion exchange

$$\mathbf{j}^{(1)} = i \, e \, \frac{g_A}{F_\pi^2} \frac{\boldsymbol{\sigma}_2 \cdot \mathbf{k}_2}{\omega_{k_2}^2} \left[\left(d_8' \tau_{2,z} + d_9' \, \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \right) \mathbf{k}_2 - d_{21}' (\boldsymbol{\tau}_1 \times \boldsymbol{\tau}_2)_z \, \boldsymbol{\sigma}_1 \times \mathbf{k}_2 \right] \times \mathbf{q} + 1 \rightleftharpoons 2 \; ,$$

L. Girlanda (Univ. Salento)

Charge operator to 1 loop

Nuclear electromagnetic processes in ChEFT 12

Charge operator to 1 loop

All divergences cancel, since there are no LECs contributing. Renormalization of OPE and relativity corrections not included yet.

Fixing the LECs

- in the minimal coupling current we take the C_i from N3LO potentials
- in the subleading OPE current

$$\mathbf{j}^{(1)} = i \, e \, \frac{g_A}{F_\pi^2} \frac{\boldsymbol{\sigma}_2 \cdot \mathbf{k}_2}{\omega_{k_2}^2} \left[\left(d_8' \boldsymbol{\tau}_{2,z} + d_9' \, \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \right) \mathbf{k}_2 - d_{21}' (\boldsymbol{\tau}_1 \times \boldsymbol{\tau}_2)_z \, \boldsymbol{\sigma}_1 \times \mathbf{k}_2 \right] \times \mathbf{q} + 1 \rightleftharpoons 2 \,,$$

the LECs could in principle be taken from πN observables. Instead, we fix them from nuclear data. However, isovector contributions can be saturated by Δ -excitation diagrams

with
$$d_8' = 4 d_{21}' = 4 \mu^* h_A / (9 m_N \Delta)$$

Fixing the LECs

1

- in the minimal coupling current we take the C_i from N3LO potentials
- in the subleading OPE current

$$\mathbf{j}^{(1)} = i \, e \, \frac{g_A}{F_\pi^2} \frac{\sigma_2 \cdot \mathbf{k}_2}{\omega_{k_2}^2} \left[\left(d_8' \tau_{2,z} + d_9' \, \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \right) \mathbf{k}_2 - d_{21}' (\boldsymbol{\tau}_1 \times \boldsymbol{\tau}_2)_z \, \boldsymbol{\sigma}_1 \times \mathbf{k}_2 \right] \times \mathbf{q} + 1 \rightleftharpoons 2 \, ,$$

the LECs could in principle be taken from πN observables. Instead, we fix them from nuclear data. However, isovector contributions can be saturated by Δ -excitation diagrams

with
$$d'_8 = 4d'_{21} = 4\mu^* h_A/(9m_N\Delta)$$

We fix $d'_{21} = d'_8/4 \implies 4$ adjustable LECs

$$d_1^S = \Lambda^4 C_{15}', \quad d_1^V = \Lambda^4 C_{16}', \quad d_2^S = \Lambda^2 d_9', \quad d_2^V = \Lambda^2 d_8'$$

Nuclear electromagnetic processes in ChEFT L. Girlanda (Univ. Salento)

Isoscalar LECs

For each A, we fixed isoscalar LECs to reproduce μ_d and μ_S Accurate nuclear wave functions from HH method with AV18+UIX and N3LO+N2LO

3

くほと くほと くほと

Isovector LECs

unnatural convergence pattern, huge model and cutoff dependence

L. Girlanda (Univ. Salento)

Nuclear electromagnetic processes in ChEFT

э

- 4 同 6 4 日 6 4 日 6

Isovector LECs

stable, model-independent prediction to 1% and 2% respectively

L. Girlanda (Univ. Salento)

- 4 同 6 4 日 6 4 日 6

Predictions for $A \le 9$ using Set III

S. Pastore, S. Pieper, R. Schiavilla, R. Wiringa, PRC87 (2013) 035503

L. Girlanda (Univ. Salento)

Nuclear electromagnetic processes in ChEFT

Deuteron charge and quadrupole form factors

agreement with data extends to $q \sim 3-4 \text{ fm}^{-1}$ or beyond

L. Girlanda (Univ. Salento)

- 4 週 ト - 4 三 ト - 4 三 ト

good agreement up to $q < 3 \text{ fm}^{-1}$ large cutoff dependence with the chiral potentials, presumably due to scheme dependence

Trinucleon charge form factors

chiral loops bring theory closer to experiment in the diffraction region good agreement below 2.5 $\rm fm^{-1}$

(日) (同) (三) (三) (三)

Trinucleon magnetic form factors

large effect of two-body currents

L. Girlanda (Univ. Salento)

Summary and outlook

- electroweak currents are naturally embedded in the ChEFT machinery
- special care is required to properly isolate the truly irreducible contribution, accounting systematically for the nucleon recoil
- we encountered ambiguities due to the off-shell behaviour of the potential. However, they don't affect observables, since different choices are unitarily equivalent, both at the level of OPE (Friar, '77) and TPE
- ▶ we have applied our charge and current operators to compute static properties and elastic form factors of the deuteron and trinucleons, finding good agreement up to $q \sim 2-3$ fm⁻¹
- large cutoff dependence and convergence pattern not yet satisfactory, pointing to the necessity including the Δ in the effective theory.