The proton-proton weak capture reaction within chiral effective field theory

Laura E. Marcucci

University of Pisa

INFN-Pisa

Cortona, October 29, 2013

Work in collaborator with: M. Viviani [Univ. of Pisa & INFN-Pisa] R. Schiavilla [ODU & Jefferson Lab., USA] The proton-proton weak capture: where do we stand

$$S(E) = S(0) + S'(0) E + \frac{1}{2}S''(0) E^2 + \cdots$$

- Gamow peak: $E \simeq 6$ keV in the Sun, $E \simeq 15$ keV in larger stars
- Latest review: SFII: E.G. Adelberger et al., RMP 83, 195 (2011)

$$S(0)=4.01(1 \pm 0.009) \times 10^{-23} \text{ MeV fm}^2$$

(PMA^[1], χ EFT*^[2] and χ EFT^[3] calculations)
 $S'(0)=S(0)$ (11.2 \pm 0.1) MeV⁻¹
(only a PMA calculation)
No realistic calculation of $S''(0)$

Schiavilla et a [2] Park et al., P

[3] Chen et al., PRC 67, 025801 (2003)

Laura E. Marcucci (Univ. of Pisa & INFN) The pp capture reaction within χ EFT

Nuclear EW currents in χEFT

EW operators: $\rho^{\gamma}, \mathbf{j}^{\gamma}; \rho^{V/A}, \mathbf{j}^{V/A}$

$$\mathsf{CVC} \Rightarrow \rho^V / \mathbf{j}^V \to \rho^\gamma / \mathbf{j}^\gamma$$

3 / 15

History

- Park *et al.* in heavy-baryon χ PT (HB χ PT) \rightarrow since \simeq 1995
- \mathbf{j}^{γ} Pastore *et al.* in time-ordered perturbation theory (TOPT) \rightarrow since 2009
 - Kölling et al. with the unitary transform method \rightarrow in parallel since 2009

$$\mathbf{j}^{A}$$
 • Park *et al.* in HB χ PT \rightarrow since $\simeq 2000$

• Baroni *et al.* in TOPT \rightarrow work in progress

To be remarked:

- Park *et al.* currents ready **BEFORE** the χ EFT potentials \Rightarrow "hybrid" χ EFT
- Park et al.: only available FULL set

Power counting for \mathbf{j}^A

Note:

- \$\mathcal{O}(Q^1)\$: loop and two-pion-exchange contributions (not yet calculated)
- Park *et al.* only available model at $\mathcal{O}(Q^0)$ \rightarrow one LEC - d_R

$$d_R = rac{M_N}{\Lambda_\chi g_A} c_D + rac{1}{3} M_N (c_3 + 2c_4) + rac{1}{6}$$

Gårdestig and Phillips, PRL **96**, 232301 (2006) Gazit *et al.*, PRL **103**, 102502 (2009)

• fit c_D and c_E (in TNI at N2LO) to B(A = 3) and GT_{Exp}

4 / 15

 $\Rightarrow \{c_D; c_E\}_{\text{MAX}} \text{ and } \{c_D; c_E\}_{\text{MIN}}$

Model	Λ	c _D	c _E	B(⁴ He)	² a _{nd}
	[MeV]			[MeV]	[fm]
N3LO/N2LO*	500	1.0	-0.029	28.36	0.675
N3LO/N2LO	500	-0.12	-0.196	28.49	0.666
N3LO/N2LO	600	-0.26	-0.846	28.64	0.696
Exp.				28.30	0.645(10)

Marcucci et al., PRL 108, 052502 (2012); Viviani et al., PRL 111, 172302 (2013)

Elastic p - d scattering $E_{lab} = 3$ MeV

Laura E. Marcucci (Univ. of Pisa & INFN) The pp capture reaction within χ EFT Cortona, October 29, 2013 6 / 15

Elastic $p-{}^{3}$ He scattering $E_{p} = 5.54$ MeV

see L. Coraggio's talk

Results: muon capture on A = 2, 3 nuclei

• $\mu^- + d \rightarrow n + n + \nu_{\mu} \longrightarrow$ capture rate in the doublet iperfine state Γ^D • $\mu^- + {}^{3}\text{He} \rightarrow {}^{3}\text{H} + \nu_{\mu} \longrightarrow$ total capture rate Γ_0

$$\Gamma^D = 399(3) \text{ s}^{-1} \& \Gamma_0 = 1494(21) \text{ s}^{-1}$$

vs.
$$\Gamma^{D}(exp) \cdots$$
 & $\Gamma_{0}(exp)=1496(4) s^{-1}$

Laura E. Marcucci (Univ. of Pisa & INFN)

The pp capture reaction within χ EFT

Cortona, October 29, 2013

9 / 15

The pp reaction

S(E) in $\chi {\rm EFT}$ and PMA

- Energy range 2 keV 100 keV
- PMA [AV18] or χ EFT [N3L0] + FULL EM interaction
- $pp \ L \leq 1$ partial waves: ${}^{1}S_{0} + all \ P$ -waves

		$V_{nucl} + V_{Coul}$	$V_{nucl} + V_{EM}$
	PMA-IA	3.99	3.96
$S(0) = {}^{1}S_{0}$	PMA-FULL	4.03	4.00
$(10^{-23} M_{\odot}) (10^{-23})$	χ EFT(500)-IA	3.96	3.94
(in 10 ²⁰ MeV fm ²)	χ EFT(500)-FULL	4.03	4.01
	χ EFT(600)-IA	3.94	3.93
	χ EFT(600)-FULL	4.01	4.01

- agreement with $S^{
 m SFII}(0)=$ 4.01(1 \pm 0.009)
- V_{EM} - $V_{Coul} \rightarrow \leq 1$ % effect
- agreement PMA-χEFT
- very small cutoff dependence (<1 %)</p>

Marcucci et al., PRL 110, 192503 (2013)

Laura E. Marcucci (Univ. of Pisa & INFN) The pp capture reaction within χ EFT

Cumulative contributions to S(0)

	¹ <i>S</i> ₀	$\cdots + {}^{3}P_{0}$	$\cdots + {}^{3}P_{1}$	$\cdots + {}^{3}P_{2}$
PMA	4.000(3)	4.003(3)	4.015(3)	4.033(3)
χ EFT(500)	4.008(5)	4.011(5)	4.020(5)	4.030(5)
χ EFT(600)	4.007(5)	4.010(5)	4.019(5)	4.029(5)

- *P*-waves contribution to $S(0) \simeq 1$ %
- theoretical uncertanity very small

$$S(0)=4.03(1 \pm 0.006) \times 10^{-23} \text{ MeV fm}^2$$

vs.
 $S(0)^{SFII}=4.01(1 \pm 0.009) \times 10^{-23} \text{ MeV fm}^2$

Energy dependence of S(E)

Polynomial fit of S(E)

Fit 1
$$\rightarrow$$
 $S(E) = S(0) + S'(0) E + \frac{1}{2}S''(0) E^2$
Fit 2 \rightarrow $S(E) = S(0) + S'(0) E + \frac{1}{2}S''(0) E^2 + \frac{1}{6}S'''(0) E^3$

	S'(0)/S(0)	S''(0)/S(0)	S'''(0)/S(0)	$\chi^2 = \sum_i (1 - f_i^{fit}/f_i^{calc})^2$
	$[MeV^{-1}]$	$[MeV^{-2}]$	[MeV ⁻³]	
S + P - Fit 1	12.59(1)	199.3(1)		8.8×10 ⁻⁴
<i>S</i> + <i>P</i> - Fit 2	11.94(1)	248.8(2)	-1183(8)	1.9×10^{-4}
¹ S ₀ - Fit 1	12.23(1)	178.4(3)		1.2×10 ⁻³
${}^{1}S_{0}$ - Fit 2	11.42(1)	239.6(5)	-1464(5)	1.9×10^{-4}
1S_0 - $\chi EFT^{[1]}$	11.3(1)	170(2)		3.4×10^{-1}

 $S'(0)/S(0)^{
m SFII} = (11.2 \pm 0.1) \; {
m MeV^{-1}}$

^[1] Chen et al., PLB **720**, 385 (2013)

Near future

•
$$p + d \rightarrow {}^{3}\text{He} + \gamma$$

• $p + {}^{3}\text{He} \rightarrow {}^{4}\text{He} + e^{+} +$

•
$$\mu^- + {}^{3}\mathrm{He} \rightarrow n + d + \nu_{\mu}$$

Less near future

• A = 3 full breakup \rightarrow other reactions $(\mu^- + {}^3\text{He} \rightarrow n + n + p + \nu_{\mu})$

 ν_e

- Other A = 4 reactions
- A > 4 systems