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Chiral Effective Field Theory (χ-EFT) interactions

pions interact weakly at small energies (Goldstone bosons)
low-scales p, mπ high-scales mρ,Λχ = m∆ −mN

expand the interaction in powers of p/Λχ, mπ/Λχ
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Figure 1: Hierarchy of nuclear forces in ChPT. Solid lines represent nucleons and dashed lines pions. Small dots, large solid
dots, solid squares, and solid diamonds denote vertices of index � = 0, 1, 2, and 4, respectively. Further explanations are
given in the text.

The reason why we talk of a hierarchy of nuclear forces is that two- and many-nucleon forces are created
on an equal footing and emerge in increasing number as we go to higher and higher orders. At NNLO, the
first set of nonvanishing three-nucleon forces (3NF) occur [70, 71], cf. column ‘3N Force’ of Fig. 1. In fact, at
the previous order, NLO, irreducible 3N graphs appear already, however, it has been shown by Weinberg [52]
and others [70, 127, 128] that these diagrams all cancel. Since nonvanishing 3NF contributions happen first
at order (Q/⇤�)3, they are very weak as compared to 2NF which start at (Q/⇤�)0.

More 2PE is produced at ⌫ = 4, next-to-next-to-next-to-leading order (N3LO), of which we show only
a few symbolic diagrams in Fig. 1. Two-loop 2PE graphs show up for the first time and so does three-pion
exchange (3PE) which necessarily involves two loops. 3PE was found to be negligible at this order [57, 58].
Most importantly, 15 new contact terms ⇠ Q4 arise and are represented by the four-nucleon-leg graph with
a solid diamond. They include a quadratic spin-orbit term and contribute up to D-waves. Mainly due to
the increased number of contact terms, a quantitative description of the two-nucleon interaction up to about
300 MeV lab. energy is possible, at N3LO (for details, see below). Besides further 3NF, four-nucleon forces
(4NF) start at this order. Since the leading 4NF come into existence one order higher than the leading 3NF,
4NF are weaker than 3NF. Thus, ChPT provides a straightforward explanation for the empirically known
fact that 2NF � 3NF � 4NF . . . .

4. Two-nucleon interactions

The last section was just an overview. In this section, we will fill in all the details involved in the ChPT
development of the NN interaction; and 3NF and 4NF will be discussed in Section 5. We start by talking

19

R. Machleidt, D. R. Entem,
Phys.Rept.503:1-75(2011)

short range contact–interaction + pions
many–body forces predicted in
model–independent way

non–local in coordinate–space (≥NLO)

HΨ(x) = TΨ(x) + V (x)Ψ(x)

→ TΨ(x) +

∫
dy V (x , y) Ψ(y)

Locality is needed for conventional QMC
Gezerlis et al. , PRL 111, 032501 (2013)

A.Roggero, A.Mukherjee (ECT*), F.Pederiva, G. Hagen (ORNL), T. Papenbrock (UT) (University of Trento)Quantum Monte Carlo for Chiral Efective Field Theory potentialsCortona - 29 Oct, 2013 3 / 16



Chiral Effective Field Theory (χ-EFT) interactions

pions interact weakly at small energies (Goldstone bosons)
low-scales p, mπ high-scales mρ,Λχ = m∆ −mN

expand the interaction in powers of p/Λχ, mπ/Λχ

+... +... +...

+...

2N Force 3N Force 4N Force

LO

(Q/⇤�)
0

NLO

(Q/⇤�)
2

NNLO

(Q/⇤�)
3

N3LO

(Q/⇤�)
4

Figure 1: Hierarchy of nuclear forces in ChPT. Solid lines represent nucleons and dashed lines pions. Small dots, large solid
dots, solid squares, and solid diamonds denote vertices of index � = 0, 1, 2, and 4, respectively. Further explanations are
given in the text.

The reason why we talk of a hierarchy of nuclear forces is that two- and many-nucleon forces are created
on an equal footing and emerge in increasing number as we go to higher and higher orders. At NNLO, the
first set of nonvanishing three-nucleon forces (3NF) occur [70, 71], cf. column ‘3N Force’ of Fig. 1. In fact, at
the previous order, NLO, irreducible 3N graphs appear already, however, it has been shown by Weinberg [52]
and others [70, 127, 128] that these diagrams all cancel. Since nonvanishing 3NF contributions happen first
at order (Q/⇤�)3, they are very weak as compared to 2NF which start at (Q/⇤�)0.

More 2PE is produced at ⌫ = 4, next-to-next-to-next-to-leading order (N3LO), of which we show only
a few symbolic diagrams in Fig. 1. Two-loop 2PE graphs show up for the first time and so does three-pion
exchange (3PE) which necessarily involves two loops. 3PE was found to be negligible at this order [57, 58].
Most importantly, 15 new contact terms ⇠ Q4 arise and are represented by the four-nucleon-leg graph with
a solid diamond. They include a quadratic spin-orbit term and contribute up to D-waves. Mainly due to
the increased number of contact terms, a quantitative description of the two-nucleon interaction up to about
300 MeV lab. energy is possible, at N3LO (for details, see below). Besides further 3NF, four-nucleon forces
(4NF) start at this order. Since the leading 4NF come into existence one order higher than the leading 3NF,
4NF are weaker than 3NF. Thus, ChPT provides a straightforward explanation for the empirically known
fact that 2NF � 3NF � 4NF . . . .

4. Two-nucleon interactions

The last section was just an overview. In this section, we will fill in all the details involved in the ChPT
development of the NN interaction; and 3NF and 4NF will be discussed in Section 5. We start by talking

19

R. Machleidt, D. R. Entem,
Phys.Rept.503:1-75(2011)

short range contact–interaction + pions
many–body forces predicted in
model–independent way
non–local in coordinate–space (≥NLO)

HΨ(x) = TΨ(x) + V (x)Ψ(x)

→ TΨ(x) +

∫
dy V (x , y) Ψ(y)

Locality is needed for conventional QMC
Gezerlis et al. , PRL 111, 032501 (2013)

A.Roggero, A.Mukherjee (ECT*), F.Pederiva, G. Hagen (ORNL), T. Papenbrock (UT) (University of Trento)Quantum Monte Carlo for Chiral Efective Field Theory potentialsCortona - 29 Oct, 2013 3 / 16



Monte Carlo methods

Use a projection operator to filter the ground–state

P[Ĥ]|Ψn〉 = |Ψn+1〉 | lim
n→∞

P[Ĥ]n|ΦT 〉 = |0〉

eg. Pa[Ĥ] = 1−∆τ Ĥ or Pb[Ĥ] = e−∆τ Ĥ

the projection is then performed stochastically.

The Standard Way
work in coordinate–space
for local interactions the projector factors in

〈Y |e−∆τ Ĥ |X 〉 =〈Y |e−∆τ T̂ |X 〉e−∆τV (X ) + O(∆τ)

≈G0(Y ,X )B(X )
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the projection is then performed stochastically.

The Standard Way
work in coordinate–space
for local interactions the projector factors in
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Monte Carlo methods

Use a projection operator to filter the ground–state

P[Ĥ]|Ψn〉 = |Ψn+1〉 | lim
n→∞

P[Ĥ]n|ΦT 〉 = |0〉

eg. Pa[Ĥ] = 1−∆τ Ĥ or Pb[Ĥ] = e−∆τ Ĥ

the projection is then performed stochastically.

The Standard Way
work in coordinate–space
for non–local interactions the projector doesn’t factor

〈Y |e−∆τ Ĥ |X 〉 =

∫
dZ 〈Y |e−∆τ T̂ |Z 〉〈Z |e−∆τ V̂ |X 〉+ O(∆τ)

≈
∫

dZG0(Y ,Z )GV (Z ,X )
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Neutron Matter with χ-EFT interactions at N2LO

We considered χ-EFT interaction at N2LO using the LEC coming from the
optimized POUNDerS analysis [Ekstrom et al., PRL 110, 192502 (2013)]
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Help from Second Quantization

Ĥ =
Ω∑
a

εaâ†aâa +
1
2

Ω∑
ijkl

Vijkl â
†
i â
†
j âk âl + . . .

A general Vijkl leads to non–local interactions
−→ locality is a very stringent condition!!

Direct Diagonalization possible only for small systems

The Second Quantized Way (Configuration Interaction MC)
work in occupation number basis: |n〉 = |. . . 01100010 . . . 〉
for any interaction the projector can be written as

〈m|P̂|n〉 =

(
〈m|P̂|n〉∑
m〈m|P̂|n〉

)(∑
m

〈m|P̂|n〉
)

= p(m,n)w(n)
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Ĥ =
Ω∑
a
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†
i â
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A general Vijkl leads to non–local interactions
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Direct Diagonalization possible only for small systems

The Second Quantized Way (Configuration Interaction MC)
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(
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)(∑
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〈m|P̂|n〉
)

= p(m,n) w(n) ←− p(m,n) > 0
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Circumventing the sign–problem

In coordinate–space we deal with the the sign problem using the so–called
"fixed–node approximation" which employs an approximate ansatz ΨT :

P(m,n) → PFN(m,n) = ΨT (m)P(m,n)Ψ−1
T (n)

In Slater–Determinant space we can do something similar using an idea by
Ceperley et al. [PRB.51.13039].

A good ΨT should be
flexible enough to incorporate relevant correlations in the system
quick to evaluate

–> we found an efficient way to use
Coupled Cluster wave–functions!!

A.Roggero, A.Mukherjee (ECT*), F.Pederiva, G. Hagen (ORNL), T. Papenbrock (UT) (University of Trento)Quantum Monte Carlo for Chiral Efective Field Theory potentialsCortona - 29 Oct, 2013 11 / 16



Circumventing the sign–problem

In coordinate–space we deal with the the sign problem using the so–called
"fixed–node approximation" which employs an approximate ansatz ΨT :

P(m,n) → PFN(m,n) = ΨT (m)P(m,n)Ψ−1
T (n)

In Slater–Determinant space we can do something similar using an idea by
Ceperley et al. [PRB.51.13039].

A good ΨT should be
flexible enough to incorporate relevant correlations in the system
quick to evaluate

–> we found an efficient way to use
Coupled Cluster wave–functions!!

A.Roggero, A.Mukherjee (ECT*), F.Pederiva, G. Hagen (ORNL), T. Papenbrock (UT) (University of Trento)Quantum Monte Carlo for Chiral Efective Field Theory potentialsCortona - 29 Oct, 2013 11 / 16



Circumventing the sign–problem

In coordinate–space we deal with the the sign problem using the so–called
"fixed–node approximation" which employs an approximate ansatz ΨT :

P(m,n) → PFN(m,n) = ΨT (m)P(m,n)Ψ−1
T (n)

In Slater–Determinant space we can do something similar using an idea by
Ceperley et al. [PRB.51.13039].

A good ΨT should be
flexible enough to incorporate relevant correlations in the system
quick to evaluate

–> we found an efficient way to use
Coupled Cluster wave–functions!!

A.Roggero, A.Mukherjee (ECT*), F.Pederiva, G. Hagen (ORNL), T. Papenbrock (UT) (University of Trento)Quantum Monte Carlo for Chiral Efective Field Theory potentialsCortona - 29 Oct, 2013 11 / 16



Towards χ-EFT interactions

Coulomb gas −→ good agreement with R–space QMC calculations

[A. R., A. Mukherjee and F. Pederiva Phys. Rev. B 88,115138]

Coulomb

〈p|V̂ |p′〉 ∝ 1
(p − p′)2

depends only on mom. transfer
q = p − p′

diagonal in spin space
real matrix elements

NNLO χ-EFT

〈p|V̂ |p′〉 ∝ V1π(p − p′) + V2π(p, p′)
+ Vcont(p, p′)

depends separately on p and p′

non–trivial spin–isospin structure
complex matrix elements

CIMC can be extended to the complex case, preserving

〈Ψ0|Ĥ|Ψ0〉 ≤ 〈ΨCIMC |Ĥ|ΨCIMC 〉 ≤ 〈ΨT |Ĥ|ΨT 〉
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Neutron Matter with χ-EFT interactions at N2LO

single–particle space S =
{
plane waves | k2 <= K 2
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}
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Conclusions

Summary:
we have developed a MC method that works for general interactions
providing rigourus upper–bounds on energy
the use of Coupled Cluster Wave–functions serves a dual pourpose:

extremely good guiding wave–function
provides variational energies for CC solutions

Future work:
three–body forces
finite nuclei
response functions [Pederiva’s talk]

Thanks for your attention
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Wave–functions for Importance Sampling

A very accurate way to account for correlations in a generic Fock–space is
the Coupled Cluster ansatz:

|ΨT 〉 = e−T̂ |ΦHF 〉 with T̂ = T̂1 + T̂2 + . . .

Here we will restrict to CCD case: T̂ = T̂2 = 1
2
∑

ij ,ab tab
ij â†aâ

†
bâj âi .

Is the CCD wave–function even quick to evaluate in SD space?

We need to calculate

Φm
CCD

( p1p2···pm
h1h2···hm

)
= ΦCCD(n) for |n〉 = a†p1

. . . a†pm
ah1 . . . ahm |ΦHF〉

It turns out that one can write a recursive formula ([arXiv:1304.1549])

Φm
CCD ( ······ ) =

m∑
γ=2

m∑
µ<ν

(−)γ+µ+νtpµpν
h1hγ Φm−2

CCD ( ······ )
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Benchmark: Coulomb gas in momentum–space

[A. R., A. Mukherjee and F. Pederiva Phys. Rev. B 88,115138]

weakly and strongly correlated regimes accessible tuning a single
density–parameter: rs (Wigner–Seitz radius)
single–particle space S =

{
plane waves | k2 <= K 2
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Results compare well with R–space MC with state of the art WF.
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