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Motivation

In peripheral high energy heavy ion collisions the system has a large
angular momentum and may manifest itself in the polarization of
secondary produced particles

Z. T. Liang, X. N. Wang, Phys.
Rev. Lett. 94 102301 (2005) and
others
B. Betz, M. Gyulassy and G.
Torrieri, Phys. Rev. C 76 044901
(2007)

F. Becattini, F. Piccinini and J.

Rizzo, Phys. Rev. C 77 024906

(2008)

yet no definite formula connecting the polarization of hadrons to
the hydrodynamical model
To understand this connection we must review some standard
concepts. 2 / 18



Barnett effect

Spontaneous magnetization of an uncharged body when spun
around its axis.

It is a dissipative transformation
of the orbital angular momentum
into spin of the constituents. The
angular velocity decreases and a
small magnetic field appears; this
phenomenon is accompanied by a
heating of the sample.

S. J. Barnett, Magnetization by Rotation, Phys. Rev. 6, 239–270 (1915).
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Cooper-Frye Formula

Cooper-Frye Formula

ε
dN

d3p
=

∫
Σ

dΣµp
µf(x, p)

f(x, p) =
1

eβ(x)·p−ξ(x) ± 1
β(x) =

1

T0
uµ ξ =

µ0

T0

Usually the spin of the particles is taken into account only as a
degeneracy factor (2S + 1), but in general, at the local
thermodinamical equilibrium, different polarization states can be
unevenly populated.

Can this formula be extended to take into account the spin of
the particles?
Is it possible to predict the value of particle polarization at the
freeze out?
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Covariant Wigner Function for Dirac Field

The covariant Wigner function makes the connection between
Kinetic Theory and Quantum Fields

W (x, k)AB = − 1

(2π)4

∫
d4y2e−ik·y〈: ΨA(x+ y/2)Ψ̄B(x− y/2) :〉

and for quasi-free theory, neglecting the interaction over scale
shorter than the Compton wavelenght, k is almost on-shell

W+(x, p) = θ(k0)W (k, x) =

∫
d3p

ε
δ4(p− k)

∑
r,s

ūr(p)f(x, p)rsus(p)

W−(x, p) = θ(−k0)W (k, x) =

∫
d3p

ε
δ4(p+ k)

∑
r,s

v̄s(p)f̄(x, p)rsvr(p)

The u(p) and v(p) are the usually solution of the Dirac equation.
The distribution function for Dirac field is 2× 2 matrix
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Global thermodinamical equilibrium with rotation

Thermodinamical equilibrium with angular momentum

ρ̂ =
1

Z
exp

[
−Ĥ/T + µQ̂/T + ω · Ĵ/T

]
PV

Obtained by maximixing the entropy
Ŝ = −trρ̂ log ρ̂ with fixed mean total
energy, momentum, charges and Angular
Momentum
ω/T is the Lagrange multiplier of the
angular momentum, with the physical
meaning of angular velocity v = ω × x
PV is the projector operator onto localized
state witch is needed to avoid the
singularity at r = c/ω 6 / 18



Global thermodynamical equilibrium with rotation

In Boltzman limit, using only statistical mechanics and group
theory arguments, the single particle distribution function is

f(x, p)rs = eξe−β·p
1

2

(
DS([p]−1Rω̂(iω/T )[p]) +DS([p]†Rω̂(iω/T )[p]†−1)

)
rs

F. Becattini, L. Tinti, Ann. Phys. 325, 1566 (2010)

β = 1
T (1,ω × x) = 1

T0
(γ, γv)

Rω̂(iω/T ) SL(2, C) Matrix representation of a rotation around
ω̂ axis for a complex angle iω/T

The degeneration factor 2S + 1 is replaced with the character of
the representation χ( iωT ) for a complex angle

S∑
r=−S

f(x, p)rr = eξe−β·ptrRω̂(iω/T ) = eξe−β·pχ(
iω

T
)
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S=1/2 case

For S = 1/2 particles we can rewrite this formula using the Dirac
spinors u(p) and v(p)

f(x, p)rs = eξe−β·p
1

2m
[ūr(p) exp[(ω/T )Σz]us(p)]

f̄(x, p)rs = −e−ξe−β·p 1

2m

[
v̄s(p) exp[−(ω/T )Σz]

T vr(p)
]

Σµν = i
4

[γµ, γν ] Σz = Σ1,2

In fully covariant form

f(x, p)rs = eξe−β·p
1

2m
[ūr(p) exp[$µνΣµν ]us(p)]

f̄(x, p)rs = −e−ξe−β·p 1

2m

[
v̄s(p) exp[−$µνΣµν ]T vr(p)

]

$µν = ω/T (δ1
µδ

2
ν − δ1

νδ
2
µ) =

√
β2Ωµν =

√
β2
Deµi
dτ

eiν

Ωµν acceleration tensor of the Frenet-Serret tetrad of the velocity
field lines 8 / 18



Fermi-Dirac extension

Ansatz

f(x, p)rs =
1

2m
ūr(p)

(
exp[β · p− ξ] exp[$µνΣµν ] + I

)−1
us(p)

f̄(x, p)rs = − 1

2m

[
v̄s(p)

(
exp[β · p+ ξ] exp[−$µνΣµν ] + I

)−1T
vr(p)

]
It reduces to Fermi-Dirac distribution function for no rotating case

f(x, p)rs =
δrs

eβ·p−ξ + 1

and if we take the Boltzmann limit becomes

f(x, p)rs = eξe−β·p
1

2m
[ū(p) exp[$µνΣµν ](p)]rs
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Local equilibrium

f(x, p)rs =
1

2m
ūr(p)

(
exp[β(x) · p− ξ(x)] exp[$µν(x)Σµν ] + I

)−1

us(p)

f̄(x, p)rs =
−1

2m

[
v̄s(p)

(
exp[β(x) · p+ ξ(x)] exp[−$(x)µνΣµν ] + I

)−1T

vr(p)

]
For small value of $µν the first correction to the charge density
and to the stress-energy tensor is O($2

µν)

j0(x) = 2

∫
d3p(nF − n̄F )

+$µν$
µν 1

4

∫
d3p[nF (1− nF )(1− 2nF )− n̄F (1− n̄F )(1− 2n̄F )]

nF = 1/[exp(β(x) · p− ξ(x)) + 1]
Very small correction ~ω/KT � 1

10 / 18



What’s the meaning of $ out of equilibrium?

The meaning of β(x) and ξ(x) are inferred from equilibrium limit.

Global equilibrium

Frenet-Serret tensor

$µν =
√
β2Ωµν

Ωµν =
Deµi
dτ

eiν

Thermal vorticity

$µν = −(∂µβν − ∂νβµ)/2

βµ =
1

T
(1,ω × x) =

1

T0
(γ, γv)

In non equilibrium situation what’s the right choice? If the system
isn’t too far from equilibrium $ should differ from equilibrium value
only for 2nd order in gradients.

$µν = −(∂µβν − ∂νβµ)/2 +O(∂2β)
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Polarization vector

Πµ = −1

2
εµρστS

ρσ p
τ

m

Sρσ is total angular momentum of single particle, then the mean
polarization vector of a particle with momentum p around the
space-time point x

〈Πµ(x, p)〉 = −1

2

1

trf
εµρστ

dJ 0,ρσ(x, p)

d3p

pτ

m

with the total angular momentum density

dJ 0,ρσ(x, p)

d3p
= (pρxσ − pσxρ)trf(x, p) +

dS0,ρσ(x, p)

d3p

The Levi-Civita tensor makes irrelevant the orbital part of the
angular momentum density.
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Spin-tensor

The average of the canonical spin tensor using the distribution
function

Sλ,µν =
1

2
〈: Ψ{γλ,Σµν}Ψ :〉

=
1

2

∫
d3p

2ε

∑
rs

f(x, p)rsū(p)s{γλ,Σµν}ur(p)− f̄(x, p)rsv̄(p)r{γλ,Σµν}v(p)s

After some algebra..

Sλ,µν = $µν 1

2

∫
d3p

ε
pλnF (p)(1− nF (p)) + rotations of indices

and

dSλ,µν(x, p)

d3p
= $µν 1

2ε
pλnF (p)(1− nF (p)) + rotations of indices

It’s a O($) term
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Mean Polarization vector

〈Πµ(x, p)〉 = −1

8
εµρστ (1−nF (p))$ρσ(x)

pτ

m
=

1

8
εµρστ (1−nF (p))∂ρβσ(x)

pτ

m

Π = (Π0,Π) =
1− nF

8m
((∇× β) · p̂, ε(∇× β)− ∂β

∂t
× p−∇β0 × p)

Quasi-free particles get transversely polarized also in steady
temperature gradient without velocity flow (v = 0 and ∇β0 6= 0)

Π = (1− nF )
~p

8mKT 2
(0,∇T × p)

Very tiny term but in some situation could be relevant!
For antiparticles just replace nF → n̄F
Particles and antiparticles have the same orientation of the
polarization vector
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Polarization in Heavy Ion Collision

In Heavy Ion Collision, one can now calculate the space-integral of
the mean polarization vector for the 3-dimensional freezeout
hypersurface Σ.

〈Πµ(p)〉 =

∫
dΣλ

pλ

ε (−1/2)εµρστ
dS0,ρσ

d3p
pτ

m∫
dΣλ

pλ

ε trf

that for $ � 1 becomes

Cooper-Frye for polarization

〈Πµ(p)〉 =
1

8
εµρστ

pτ

m

∫
dΣλp

λnF (1− nF )∂ρβσ∫
dΣλpλnF
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Polarization of Λ

The polarization Λ it’s determined by measuring the angular
distribution of the dacay protons

1

N

dN

dΩ∗
=

1

4π
(1+αΠ0·p̂∗)

Polarization 3-vector in the
rest-frame of Λ

Π0 = Π− p

ε(ε+m)
Π · p

Π(p) =
ε

8m

∫
dΣλp

λnF (∇× β)∫
dΣλpλnF

+
p

8m
×
∫

dΣλp
λnF (∂tβ +∇β0)∫
dΣλpλnF

For symmetry reason the most polarized Λ are those in the reaction
plane
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Polarization of Λ

Vorticity of the β field (thermal
vorticity) ∂µβν − ∂νβµ
L. P. Csernai et al. Phys. Rev. C 88, 034905
(2013)

Average polarization consistent with the bound
set by RHIC (<0.02).

Module of polarization of Λ

Π(p) =
ε

8m

∫
dV nF (∇× β)∫

dV nF
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Conclusions and Outlook

We have determinated the relativistic distribution function for
spin 1/2 particles at local equilibrium
At leading order in the gradients of β the polarization of the
particles is proportional to thermal vorticity ∂µβν − ∂νβµ.
We have obtained an extension of the Cooper-Frye formula to
calculate spin 1/2 particle polarization in Heavy Ion collision at
the freeze out.
The detection of this polarization would be a striking
confirmation of the achievement of local thermodynamical
equilibrium, also for the spin degrees of freedom.
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