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In peripheral high energy heavy ion collisions the system has a large
angular momentum and may manifest itself in the polarization of
secondary produced particles
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X
yet no definite formula connecting the polarization of hadrons to
the hydrodynamical model
To understand this connection we must review some standard
concepts. 2/18



Barnett effect

Spontaneous magnetization of an uncharged body when spun
around its axis.

|
It is a dissipative transformation
of the orbital angular momentum
into spin of the constituents. The
angular velocity decreases and a
small magnetic field appears; this
phenomenon is accompanied by a
heating of the sample.

S. J. Barnett, Magnetization by Rotation, Phys. Rev. 6, 239-270 (1915).
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Cooper-Frye Formula

Cooper-Frye Formula

[ S Edﬁup”f(x,p)]
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Usually the spin of the particles is taken into account only as a
degeneracy factor (25 + 1), but in general, at the local
thermodinamical equilibrium, different polarization states can be
unevenly populated.

|
m Can this formula be extended to take into account the spin of
the particles?

m |s it possible to predict the value of particle polarization at the
freeze out?
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Covariant Wigner Function for Dirac Field

The covariant Wigner function makes the connection between
Kinetic Theory and Quantum Fields

W(.’L‘, k)AB

B (2711')4 / dly2e” ™V W a(x +y/2)Vp(z — y/2) )

and for quasi-free theory, neglecting the interaction over scale
shorter than the Compton wavelenght, k is almost on-shell

W (z,p) = 0(K°)W (k, ) = /d Psip— & Zur (2, P)rstis (D)
W (2, p) = 0(—KO)W (k,2) = / p+k) sz F(@,p)rsvr(p)

The u(p) and v(p) are the usually solution of the Dirac equation.
The distribution function for Dirac field is 2 x 2 matrix
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Global thermodinamical equilibrium with rotation

Thermodinamical equilibrium with angular momentum

exp [—I:T/T—i-,u@/T—Fw . 3/T} Py

m Obtained by maximixing the entropy

S = —trplog p with fixed mean total
energy, momentum, charges and Angular i ‘_.
Momentum \F,/ x
m w/T is the Lagrange multiplier of the /’T—@\

angular momentum, with the physical \_‘_L’y
meaning of angular velocity v = w x @ 1

m Py is the projector operator onto localized R/T
state witch is needed to avoid the \‘_’/
singularity at r = c/w 6518




Global thermodynamical equilibrium with rotation

In Boltzman limit, using only statistical mechanics and group
theory arguments, the single particle distribution function is

f(@,p)rs = 6ge’ﬁ'p% (D*([p) ™" Ra (iww/T)[p]) + D ([p]" Res (iww/T) [p] 1))

rSs

F. Becattini, L. Tinti, Ann. Phys. 325, 1566 (2010)

m (= %(1,w X X) = Tio('y,fyv)
m Ry (iw/T) SL(2,C) Matrix representation of a rotation around
w axis for a complex angle iw/T

The degeneration factor 25 + 1 is replaced with the character of
the representation x (%) for a complex angle

)

S
Z flx,p)rr = ese_ﬂ'ptrRQ,(iw/T) = ege_ﬁ'px( T)

r=—35
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S=1/2 case

For S = 1/2 particles we can rewrite this formula using the Dirac
spinors u(p) and v(p)

F(@,p)re = 57, () expl(@/T) S-Jus ()

F@pre = e~ L [0.(p) expl— (/7)1 01 (0)]

E,Lu/ = i‘hﬁu,”}’u] Y, = 21,2
In fully covariant form

F@, e = €577 [, (p) explemn = Jus ()]

F(@,p)rs = —e %7’ "’% [ﬂs(p) exp[—wqu“"]Tvr(p)]

Det .
Wpv = w/T(é/liél% - 611/5/21) =V ﬁzguu =V /32 dTl e
€2,,, acceleration tensor of the Frenet-Serret tetrad of the velocity

field lines 8/18



Fermi-Dirac extension

Ansatz

£ D)rs = 5—5r(p) (expl8 - p — &) xple™ Bya] + 1) alp)

2m
_ 1 [ , —-1T
J@.p)rs = =5 |5(0) (xplB - p+ exp[-=*Bu) +1)  vr(p)
It reduces to Fermi-Dirac distribution function for no rotating case
67’8
f(@,p)rs = Bt 1

and if we take the Boltzmann limit becomes
1

f(x,p)rs = efe—ﬁ-p% [u(p) eXP[wWEw/](p)]rs
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Local equilibrium

F(@p)es = 5 10() (ex0lB() - p — ()] explem (2] + 1) (o)
_ -1 =17
F@,phee = 5o [0000) (ex0080) -+ €@ expl-ole) =] +1)  0rl0)]

For small value of w,,, the first correction to the charge density
and to the stress-energy tensor is O(wfw)

@) =2 [ pnr ~ )
,ul/l 3 — — _
+w, ™ 1 /d plnp(1 —np)(1 —2np) —ap(l —np)(l — 20p)]

np = 1/lexp(6(z) - p = £(z)) +1]
Very small correction fuw /KT < 1
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What's the meaning of @ out of equilibrium?

The meaning of 5(z) and () are inferred from equilibrium limit.

Global equilibrium

Frenet-Serret tensor Thermal vorticity
T = V B2 Quu Wy = —(0uBy — 0uBu) /2
De? . " 1 1
— 1tV = (1 -
Q/,u/ d’]’ € ﬁ T( 7w X X) TO (777")

In non equilibrium situation what's the right choice? If the system
isn't too far from equilibrium o should differ from equilibrium value
only for 2nd order in gradients.

Wuy = _(8},61811 - ar/ﬁ,u)/2 + 0(825)
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Polarization vector

1

.
I, = _ieupwspapf

SPY is total angular momentum of single particle, then the mean
polarization vector of a particle with momentum p around the
space-time point x

11 AT (z,p) p
m

II = 35z oT
< /L(‘Tap)> 2trf6,u/) dgp

with the total angular momentum density

A% (z,p)
d3p

ds**7 (x, p)

The Levi-Civita tensor makes irrelevant the orbital part of the
angular momentum density.
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The average of the canonical spin tensor using the distribution
function

M = L B )

/ LS Do S ) — Dt 9 ol

After some algebra..

d
[S’\"“’ = /—ppAnF )(1 — np(p)) + rotations of indices]
and
ds 1
[ > dgz()m’p) = w“”2—€p)‘np(p)(1 — np(p)) + rotations of indices]

It'sa O(w) term
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Mean Polarization vector

[ (T, (2,8) = ~ g upar (176 (0)) @ (@) = o (1= ()07 () ]

11 = (1o, 11) = - "2(V % B)- p.e(V < )~ 92 x p— V4" x p)

Quasi-free particles get transversely polarized also in steady
temperature gradient without velocity flow (v = 0 and VY # 0)

I=(1-np)s——=(0,VT x p)

hp
SmKT?
Very tiny term but in some situation could be relevant!
For antiparticles just replace np — fip

Particles and antiparticles have the same orientation of the
polarization vector
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Polarization in Heavy lon Collision

In Heavy lon Collision, one can now calculate the space-integral of
the mean polarization vector for the 3-dimensional freezeout
hypersurface X.

A 0,p0 T
_ fdzkp?(_l/Q)fupﬂ%%

Jas\Zirf

{I.(p))

that for @ < 1 becomes

Cooper-Frye for polarization

1 T de,\p)‘nF(l —np)oPB°
IT =3 oT
(L (p)) S e [ dE\prnp
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Polarization of A

The polarization A it's determined by measuring the angular
distribution of the dacay protons

1 dN 1 s
Polarization 3-vector in the
rest-frame of A

p
My=TI——2 11.
0 e(e+m) p

e [dS\p*p(VXB) | p 9 J A= nr (98 + V)

H =

(p) 8m fdz)\p)‘np 8m fdz)\p/\np
For symmetry reason the most polarized A are those in the reaction
plane
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Polarization of A

Vorticity of the § field (thermal Module of polarization of A

vorticity) 0,8, — 0,8,
L. P. Csernai et al. Phys. Rev. C 88, 034905 £ deTLF(V X ﬁ)

(2013) II(p) =

&m f dVn a

Average polarization consistent with the bound
set by RHIC (<0.02).




Conclusions and Outlook

m We have determinated the relativistic distribution function for
spin 1/2 particles at local equilibrium

m At leading order in the gradients of 3 the polarization of the
particles is proportional to thermal vorticity 0,8, — 0, ,.

m We have obtained an extension of the Cooper-Frye formula to
calculate spin 1/2 particle polarization in Heavy lon collision at
the freeze out.

m The detection of this polarization would be a striking
confirmation of the achievement of local thermodynamical
equilibrium, also for the spin degrees of freedom.
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