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Motivations

@ To achieve a fully covariant description for a few-body system, in
Minkowski space

@ To take properly into account the dynamics, within a field-theoretical
framework

@ To make feasable numerical calculations

Well-known non perturbative approches: lattice calculations in Euclidean
space
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The BSE in a nutshell

The 4-point Green's Function,

G(x1, %2 y1,y2) =< 0| T{1(x1)d2(x2) 971 (y1)é5 (y2)} 0 >

fulfills an integral equation G = Gy + Gy I G

A+ N+
// \\ II \\

Iterations produce all the expected contributions
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Insert a complete Fock basis in

G(x1, %2 y1,¥2) =< 0| T{d1(x1)¢2(x2)b7 (y1)3 (y2)} |0 >

then in the Fourier space, the bound state contribution (assuming only one
non degenerate bound state for the sake of simplicity) appears as a pole,
i.e.

i ¢(kips) ¢(kips)
27)~% 2wg(po — wp + i€)

Ga(k, q; pg) =~ (
where wg = /M3 + |p|2 and ¢(k; pg) is the Bethe-Salpeter Amplitude,

in the Fourier space, for a bound state. In configuration space, BS
Amplitude is given by

(O] T{p1(x1)92(x2) } P& B)
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For pg — wp the 4-point Green's function can be approximate by
G ~ Gg + regular terms

and one deduces from G = Gy + Gg I G, the integral equation
determining the BS Amplitude for a bound state, i.e. the homogeneous BS
Eq.

6(k; ps. ) = Go(k: ps. 5) / d*q (k. ' pg) &(q'; pe. B)

with (nor self-energy neither vertex corrections, at the present stage)
i i
(BB +k2?2—m2+ie (B2 —k)2—m?+ic

Go =

Notice: 1I(k,q’; pg), the irreducible kernel in BSE, i the same in
G =G+0+ GylG.
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Feynman parametrization

In the sixties, Nakanishi (PR 130, 1230 (1963)) proposed an integral
representation for N-leg transition amplitudes, based on the parametric

formula for the Feynman diagrams.
N N

1 1

For N external legs, a generic contribution to the transition amplitude is
given by

1
4

where one has n propagators and k loops (= n. of integration variables).

The label G — (n, k)
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Following the standard (textbook) elaboration, one can write
(1=«
. H / (-fie)
) [F(n, N, s) + ie]"™

F(n,N,a,s) = Zajm +Z77h5h

where

with the dependence upon the external momenta, p1, p> ... py, traded off
in favour of all the independent scalar products s = {s1,52,...5p,... },
one can construct.
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Nakanishi PTIR - |

x N - -
~ Nakanishi proposal for a compact and elegant espression
aa/

of the full N-leg amplitude fy(s) = > 5 fg(s)

Introducing the identity

-1/ _m) * g om
1—1;[/0 dzh<5<zh 3 /0 d’yé(’y Z 3

I
with 8 = > n; and integrating by parts n — 2k — 1 times

— Y 2n) bg(z,7)
fg(s) o H/ dzh/ d’y hZhZhSh)

where qzﬂﬁg(z,'y) is a proper function
The depedence upon the details of the diagram, (n, k), moves from the
denominator to the numerator!! The SAME formal expression for the
denominator of ANY diagram G appears
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Nakanishi PTIR - I

The full N-leg transition amplitude can be formally written as

ZhZh) on(z,7)
Z f5(s) o H/ dz,,/ d’y N )

where

z,9) =Y d(z,7)
g

Within the BS framework, such an elegant expression can be exploited for
obtaining

@ the 3-leg transition amplitude (vertex function — bound-state BS

amplitude) (Kusaka et al, PRD 56 (1997), Carbonell-Karmanov EPJA
27 (2006))

@ the 4-leg one (off-shell or half-off-shell T-matrix — scattering-state
BS amplitude) (FSV, PRD 85 (2012))
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The PTIR of the vertex function

1 [e§) z,
f3(s) :/ dz/ dy——0 ¢3£ 7) :
0 0 v— G —ke—zk-p—ie

with p = p1 + p2 and k = (p1 — p2)/2

How can the Nakanishi weight function, ¢3, be determined for an actual,
dynamical model?

Can the Nakanishi expression, elaborated in perturbation theory , be used
in a non perturbative realm, as the BS framework does (one has to face
with an integral equation, i.e. one has an infinite set of contributions)?
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Integrating the BSE on the LF variable k= = k® + k,

Let us take the Nakanishi vertex function as an Ansatz for the BS
amplitude and then, integrate it on the Light-Front variable k= = k® + k,.

One gets the valence component of the state of the interacting system

(after expanding on the Fock basis)
BS Amplit.

vna(ek) = 2o e -9 [ 9 auich) -

_ / gb('Ylvl - 25;‘%2)
(=9 /0 N TR et (e 1 i

Nakanishi Ansatz
LF projection of BSE =

/wd ' 85(7', zi K7) _
o Tt 2m (1 2)RE i
oo 1
=/ dv'/ dz' V" (7,27, 2 )es(v', s 7).
0 -1
with VEF (v, z;+/,2") determined by the irr. kernel I(k, k', p) '
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Applying the uniqueness of the Nakanishi weight function

Nakanishi enriched his theoretical invetigation by demonstrating a theorem
on the uniqueness of the weight function for a given N-leg amplitude.

If such a theorem is valid also in the non perturbative context of the BSE
a simpler integral equation for the weight function can be written

0 1
gb(7, 2, K?) = / d'y’/ dz' Vo(v, 27, 2 k) gn(7, 2 K°)
0 —1

where Vp(7,z;v', 2'; k2) is a new kernel, properly related to
VEF (v, 27/, 2)) |

oo Vb(’}/ z: ’Y” z/; Hz)
VLF . Z; //’ / =/ d~' ) ?
b (1.277,7) 0 7[’y’+’y+z2m2+(1—z2)n2—ie]2

a Fredholm integral equation of first kind.

First in a canonical approach (Kusaka et al PRD 56, (1997)), recently in a
LF approach (FSV PRD 85,(2012))
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Numerical results for eigenvalues and LF distributions in
ladder apprx.

We have carried out a comprehensive investigation, in ladder
approximation, of the simple scalar model, £ = g¢?y,

@ varying both binding energies 0 < B/m < 2 and the mass of the
exchanged scalar, p/m,

@ using the two eigen-equations: the one involving directly the valence
wave function and the one based on the uniqueness theorem.

One fixes the binding energy, B/m = 2 — M/m, and the mass of the
exchanged scalar, and looks for the eigenvalue (the coupling constant) and
the eigenfunction (the Nakanishi weight function).

Comparison with the results from i) Carbonell-Karmanov (EPJA 27, 1
(2006)) (valence w.f. based & covariant LF) and ii) Kusaka et al, (PRD
56, 5071 (1997)) (uniqueness based &canonical approach). .
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pu/m=0.15

u/m = 0.50

B/m | o LF-V (CK) | a LF-V (FSV) [ a LF-U (FSV)
0.01 05716 05716 05716
0.10 1.437 1.437 1.437
0.20 2.100 2.099 2.099
0.50 3611 3.610 3611
1.00 5315 5313 5314
B/m | a LF-V (CK) | a LF-V (FSV) [[ « LF-U (FSV)
0.01 1.440 1.440 1.440
0.10 2.498 2.498 2.498
0.20 3.251 3.251 3.251
0.50 4,901 4.901 4.901
1.00 6.712 6.711 6.711

Values of a = g2/(167m?), obtained by solving the valence-based
eigenequation (LF-V) and the uniqueness-based one (LF-U). Gegenbauer
x Laguerre expansion of the Nakanishi wf
LF-V (CK): from Carbonell -Karmanov, EPJA 27, 1 (2006) (spline
expansion of the Nakanishi wf).
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B/m | a C-U | a LF-U || o LF-V
0.002 | 1.211 1.216 1.216
0.02 1.624 1.623 1.623
0.20 3.252 3.251 3.251
u/m = 0.50 0.40 4.416 4.415 4.416
0.80 6.096 6.094 6.094
1.20 7.206 7.204 7.204
1.60 | 7.850 | 7.849 7.849
2.00 8.062 8.061 8.061

Values of a = g2/(167m?), obtained by solving the valence-based
eigenequation (LF-V) and the uniqueness-based one (LF-U). Gegenbauer
X Laguerre expansion of the Nakanishi wf

C-U: from Kusaka,Simpson and Williams, PRD 56, 5071 (1997), where
uniqueness and canonical (not LF !) variables have been used and iteration
method for solving the eigenequation.
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A flash on the Nakanishi weight function gy(, z; 2)

Just an example: B/m = 1and u/m= 0.5 (k? =4 — M?)

O 0
=3 =3
<) <)
e} o)
(=2 D
~ ~
o 0 ~
N N
?: ?: 05 -3
Ko} o) 2
o o y=1.0m
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Difference A = |gy(z, v; 52) — gv(z,7; K?
Still an example: B/m = 1 and u/m = 0.5 (k> = 4 — M?)
AY(z,y,K7)
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Valence Probabilities and LF Distributions

Once the Nakanishi weight functions is evaluated, one can
straightforwardly obtain the BS amplitude and normalize it.

Then, the probability of the the valence wave function, 1,—2(, k),
results properly determined and one can also calculate the LF
distributions,relevant in Hadron Physics

B/m o P
0.001 | 1.167 | 0.98
0.01 1.440 | 0.96
0.10 | 2.498 | 0.87
0.20 3.251 | 0.83
0.50 4.900 | 0.77
1.00 6.711 | 0.74
2.00 8.061 | 0.72

wu/m = 0.50

P,y — lforB — 0!
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NO sizable difference between LF-V and LF-U results !!
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The longitudinal LF-distribution, ¢(&) = [ dk? |¢n=a(&, k1 )|?, vs the
longitudinal-momentum fraction £ = k™ /M. Dash-double-dotted line:
B/m = 0.20. Dotted line: B/m = 0.50. Solid line: B/m = 1.0. Dashed

line: B/m =2.0. N.B. fol d& ¢(&) = Puar
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NO sizable difference between LF-V and LF-U results !!

T S S T T T T T AR S
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The transverse LF-distribution P(v) = [ d€ |1n=2(&, k1)|? vs the
adimensional variable v/m? (7 = k?). Dash-double-dotted line:

B/m = 0.20. Dotted line: B/m = 0.50. Solid line: B/m = 1.0. Dashed
line: B/m =2.0. N.B.[;* dy P(7) = Pyar.
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Conclusions & Perspectives |

@ The cross-fertilization between the Light-Front framework and the
Nakanishi PTIR paves the path toward a new class of non
perturbative calculations, within a rigorous field-theoretical framework
(the Bethe-Salpeter Equation in Minkowski space).

@ The LF framework has well-known advantages in performing
analytical integrations, that within the canonical approach appear
highly non trivial.

@ Our numerical investigations, performed in ladder approximation at
the present stage, confirm both the robusteness of the Nakanishi
Ansatz for the BS amplitude and the Uniqueness Theorem. Morever,
we extended the numerical analysis of an actual dynamical model to
the valence probability and the LF distributions, of great relevance for
Hadron Physics.

e Calculations are in progress for i) the scattering length (FSV) and ii)
the crossed-box contribution (A. lannone, Master thesis).
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Conclusions & Perspectives Il

@ For the crossed-box contribution, a simple symmetry trasformation
has been explored

with

@ The reduction of the formalism to a 2 + 1 case (Frederico et al) is in
progress, relevant for solid state applications.
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