
Compitino Fisica aI b 8 Novembre 2005

Esercizio n. 1

Un proiettile viene lanciato da un punto P di coordinate $(0, y_P=4.0 \text{ m})$, con velocità di modulo V_0 e con un angolo α rispetto alla direzione orizzontale. Un bersaglio B si trova dentro una caverna, la cui sommità A è posta in $(x_A=10.0 \text{ m}, y_A=3.0 \text{ m})$ come in figura . È presente un campo gravitazionale \vec{g} di intensità 9.8 m/s^2 .

- 1. Calcolare la massima distanza d_{max} dall'entrata della caverna a cui il proiettile può essere scagliato potendo scegliere a piacere i valori di V_0 e α .
- 2. Calcolare l'angolo α corrispondente alla massima distanza raggiungibile dal proiettile dall'entrata della caverna per il valore $V_0=10.0~{\rm m/s}.$
- 3. Trovare la velocità \vec{V}_f con cui il proiettile tocca terra se viene scagliato radente (con angolo $\alpha = 0$).

Esercizio n. 2

Ad un bambino è stato regalato un giocattolo, che consiste in una guida intagliata su un tronco di cono, su cui viene fatto scendere un piccolo carrello. Il tronco di cono è poggiato sul cerchio di area maggiore e il raggio del cerchio di

area minore è R=0.2 m. Si considerino coordinate cilindriche, in cui l'asse \hat{z} è l'asse del tronco di cono ed è diretto verso l'alto. Sul piano ortogonale a \hat{z} , la traiettoria del carrellino è descritta in coordinate polari da

$$r(\theta) = R + \frac{b}{2\pi}\theta$$

con b pari a 0.8 m/rad. Si supponga che il carrellino sia posto nel punto più alto della guida e che il suo moto sia regolato da un motorino, in modo tale che la componente lungo \hat{z} della sua velocità istantanea v_z sia costante, diretta verso il basso e pari a 0.1 m/s.

1. Nell'ipotesi che il carrellino percorra la guida con velocità istantanea costante in modulo e pari a $v_0 = 0.8$ m/s, determinare la velocità angolare del carrellino dopo che questo ha fatto n = 3 giri.

Si supponga adesso che il giocattolo sia fatto in modo tale che oltre a v_z , sia costante non il modulo della velocità istantanea del carrellino, bensì la sua velocità angolare e che questa sia pari a $\omega=0.7$ rad/s. Determinare, dopo 3 s che il carrellino è stato rilasciato dal punto più alto della guida:

- 2. la componente radiale del versore tangente alla traiettoria;
- 3. la componente dell'accelerazione istantanea del carrellino parallela alla velocità istantanea.

Esercizio n. 3

Viene praticata una scanalatura radiale su una piattaforma circolare. All'istante iniziale (t=0) un punto materiale è posto nel centro O e si muove lungo la scalanatura con modulo della velocità $v=ct,\ c=1\ {\rm m/s^2}.$ La piattaforma ruota (rispetto al pavimento) attorno ad un asse passante per il centro con velocità angolare di modulo costante $\omega=3\ {\rm rad/s}.$ Determinare per $t=5\ {\rm s},$ scegliendo il sistema di coordinate ritenuto più opportuno:

- 1. l'accelerazione \vec{a} nel sistema di riferimento del pavimento
- 2. l'accelerazione \vec{a}' in un sistema di riferimento solidale alla piattaforma e centrato in 0