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Evaluation of the Interaction EFFect in n-p Capture
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Cornell University, Ithaca, New Fork

(Received July 17, 1955l

It is found possible to establish by theoretical arguments tha& the recently measured thermal n-p capture
cross section cannot all be ascribed to the neutron and proton magnetic moments, but that about 8 percent
&5 percent must be contributed by an "interaction" magnetic dipole moment.

L DTTRODUCTION
' 'T is generally recognized that when a nuclear system
~ ~ is in interaction with the electromagnetic field the
nucleons do not merely act as individuals, possessing
charges and magnetic moments, but rather their electro-
magnetic interaction is also somewhat inRuenced by
their nuclear interaction. This inQuence has been named
"interaction effect" (although also called "exchange
effect"), because of its association with the mechanism
of nuclear interaction, and it is expected to be im-
portant only for magnetic multipole radiation. Perhaps
the best case from which to obtain some quantitative
information about interaction eGects is the mell-known
magnetic dipole transition in n-p capture. Here we
would look for some "interaction" magnetic dipole
moment, in addition to the neutron and proton mo-
ments. The thermal capture cross section is considered
in this paper.

Until this year, considerations of n Pcaptu-re' ' were
unable to draw conclusions from the experimental
numbers which have been available. Accurate thermal
n-p capture measurements have since been made, '4
supplementing those of Whitehouse and Graham, ~ and
the rs-p singlet effective range has been measured in
precision scattering experiments. ' With these new data
the situation has been altered to the extent that the
chief remaining uncertainties are now of theoretical
origin.

The present paper was originally written as an
analysis of the result of Hamermesh et a/. ' Harris et a/. ,

4

in a brief analysis of their own experiment, have since
announced the existence of an interaction moment con-
tribution in the capture cross section. Their analysis is
based on the effective range discussion of Bethe and
Longmire. ~ In actuality the e-p capture matrix element
(assuming no interaction moment) receives such large
contributions from regions within the range of nuclear
forces that the precision to be expected of the Bethe-

' N. Austern and R, G. Sachs, Phys. Rev. 81, 710 (1951l.
2 E. P. Gray, thesis, Corne11 University, 1952 (unpublished).
3Hamermesh, Ringo, and Wexler, Phys Rev. 90, 603 (1953).

Harris, Muehlhause, Rose, Schroeder, Thomas, and Wexler,
Phys. Rev. 91, I25 (1953).

'W. J. Whitehouse and G. A. R. Graham, Can. J. Research
A25, 26~ (I947)

6 R. K. Adair (to be published). Hafner, Hornyak, Falk, Snow,
and Coor, Phys. Rev. 89, 204 (I953). The singlet range value
which is used here is essentially that of Adair, and is fairly close
to the p-P range.

~ H. A. Bethe and C. X.ongmire, Phys. Rev. 77, 647 (1950).

Longmire result is by no means obvious. The aim of the
present paper is to present a careful study of the sensi-
tivity of the I-P capture matrix element to whatever
arbitrary assumptions one might make about the wave
functions.

It is found that the limitations of our knowledge of
the wave functions lead to an uncertainty of about 1ts

percent in the matrix element. In particular, it is very
unlikely that the wave functions can be of such a sort
that the matrix element is much bigger, for example, than
for Hulthen functions. Thus, the existence and sign of
the interaction eGect are certain, although the mag-
nitude is not known very well. The sign is that which
was expected from studies' ' of the three-body moment
anomaly, and the magnitude also is roughly as expected.
Numerically, the effect is 8&5 percent of the cross
section.

Interestingly, the new values for o.,(exp) are just
about 8 percent larger than the old values. This 8
percent is mostly a consequence of a recalibration' of
the boron capture cross section, with which that of
hydrogen is compared.

II. FORMAL ASPECTS OF THE CALCULATION

If there is no interaction moment contribution, the
total n-p capture cross section is given by

0,= (s./2) (e'/3IIc') (&os/k'cs) (p~ —p&)s
~

N,l,dr
(

. (1)

Here k is the wave number for the incident system in
center-of-mass coordinates, having the value 1.743)&10'
cm ' at the standard neutron velocity, 2200 m/sec. For
thermal energies the frequency of the emitted light is
co= s/k, e being the deuteron binding energy. The wave
functions I, and I, are the usual "radial" wave func-
tions for the ground state and for the continuum
singlet s state, respectively. Here I, is normalized such
that Js"(N,s+m, s)dr= 1, where w, is the corresponding
D state function. The function I, is normalized so as to
go asymptotically to sin(br+5, ) as r becomes very
large.

The deuteron D state plays no role in Fq. (1).
Indeed, the analysis which completely neglects the D
state is almost exact, for the reduced amplitude which
I, possesses by virtue of the presence of the D state is

Unpublished Argonne National Laboratory data.
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counterbalanced by a corresponding correction to the
triplet eGective range. However, there is some D state
inhuence on the shape of N„even if not on the am-
plitude, and this enters in the subsequent discussion.
The rudiments of eGective range theory with tensor
forces are presented in the Appendix.

It is convenient to define the functions U„S"„U„
%,„Vv"„'K,. Here U„S'„and U, have the same shapes
as e„m„and N„only being normalized diGerently.
The relative normalization is given by N =gu /gU g

=w /gW„so that N, satisfies

(Ug'+ Wg') dr (2)

The functions 'll, „'N„and 'll, agree asymptotically
with U„R'„and U„but satisfy diGerential equations
in which the nuclear interaction and centrifugal repul-
sion terms have been dropped. The normalizations of
'ttg and '1t„hence of U„W„and U„are given by
%.g(0)= tt, (0)=1. Specific forms for the asymptotic
functions are

%g=e ~", (3a)

'tt, = sin (kr+ b,)/sinb, = 1 r/a„(—3b)

%'g=qe ~". (3c)

Here hgy'/M= g, the deuteron binding energy, and rl is
a parameter which is both defined and utilized only in
the Appendix. In terms of U, and U„Eq. (1) becomes

0,= (7r/2k) (e'/Mc') (gg/c)'(p+ pp)'N 'a '~ DR' (4)

where

lation, which does not directly concern itself with the
nuclear forces, it is only possible to ignore the energy
variation of p& and to tolerate the resulting uncertainty
in Ng.

Aside from the calculation of N„ the principal use
made of the eGective ranges will be in obtaining limita-
tions on the forms of the wave functions, U, and U, .
In each case the technique is to assume a form for the
wave function, leaving one parameter undetermined,
then to choose this parameter so that the wave function
leads to a correct value for the effective range. For U,
the procedure is especially simple:

~CO

p, (0, 0) =2 ( tt,m —U,')dr.
Jo

(6)

For U, the D state introduces some complication. We
have

Then

p, (—e, —g)=2 t ('U, '—U' —W')dr.
0

F00 ~00

8'g'dr=Ng ' mg'dr=Ng 'Pg),
Jo

(A7)

where Pn= Jg" wg'dr is the quantity which is com-
monly called the "percent of D state" in the deuteron.
In terms of PD we can dehne

p~' =—p~(—g, —g)+2Ng 'Pg))—
and base the further calculations on the relation

5K=— Ug U,dr,

and a, is the zero-energy singlet scattering length.
The calculation of N, is given in terms of the eGective

range as

where
~00

pt (+1 +2) 2 ( ttgl t42 UglUg2 WglWg2)dr. (A7)
4O

As usual the quantity which is found experimentally is

p, (0, —c), so some energy correction is needed in order
to compute X,. This correction is uncertain. It is
customarily made with the aid of the "shape dependent
parameter" of the eGective range theory and amounts
to about 1 percent of p&. (Only in the Yukawa potential
analysis has the correction been found to be much
larger, and Biedenharn has shown this large result to
be a spurious consequence of the neglect of tensor
forces. ') Consistent with the spirit of the present calcu-

' Private communication from J.Blatt Doctoral Thesis, Massa-
chusetts Institute of Technology (unpublished). Other calcula-
tions also suggest that tensor forces tend to reduce the Yukawa
"shape dependent parameter, " although they do not seem to
show so complete a reduction as is stated' above. For the present
calculation, however, this is not a major source of error.

The quantity p&', the eGective range for the s state
alone, is uncertain to just that extent that the percent
D state is unknown. The uncertainty in the percent D
state will lead to an uncertainty in the capture cross
section which will be seen to be of about the same size
as the other major uncertainties. A reasonable estimate
for PD is P~=0.04+0.02.

A tabulation of relevant numbers is given in Table I.

TABLE I. Relevant data.

Ref. No.

0,=0.329&0.0046 at 2200 m /sec
~=2.225 Mev, y=0,2315X10'3cm '
4=1.743X10' cm '

(p~—p~) = —4.7054
a,= —23.67X10"cm
p, =2.6~0.2X10 "cm

p&(0, —e}=1.703(1~0.02) X10 '3 cm
p, '=1.80&0.05X 10-13 cm

& See references 3 and 4.
b E. E. Salpeter, unpublished tabulation of low-energy data.
J. E. Mack, Revs. Modern Phys. 22, 64 (1950).

~ See reference 6.
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0.3
0.6
0.9
1.1

1.635
2.396
4.525

11.10

1.552
2.480
5.50

23.4

4.032
4.036
4.045
4.022

TABLE II. Repulsive core parameters Lease (b)j. which are small near r=0, i.e., they must arise from
"long-tailed" nuclear potentials.

The cases which follow below are all fitted to p, =2.6
)&10 "cm and p&'=1.8)(10 "cm, but with the sects
of differential variations of the effective ranges being
indicated in several typical cases. All the numbers
below have dimensions 10 "cm or 10"cm '.

TABLE III Damping parameters g and g as functions
of o. and P.

1
1.340
1
1.207

0.7
0.987
0.7
0.942

0.5
0.694
0.5
0.718

0.3
0.351
0.3
0.469

0
impossible

0
0

IIL DETAILED CALCULATIONS

It might be supposed impossible to estimate the
overlap integral, OR= JQ" U, U,dr, to the accuracy
required for our application, i.e., about 2 percent. The
corresponding integral for zero-range wave functions,
ORQ = JQ itg%L dr i s easily computed and. is seen to
receive a 30 percent contribution from distances
r~&2&(10 " cm. Even for wave functions with the
correct ranges the contribution from r ~&2)&10 " cm
is still about 10 percent. Nevertheless 5E can be esti-
mated to the requisite accuracy, a result which is only
suggested by the analysis of Bethe and Longmire. A
particularly satisfying result for the present purpose is
that the upper limit on 5K is especially sharp and
plausible.

A variational calculation for 5K would be very
pleasant, as the extrema found in such a way would be
reliable. The effective ranges would appear as condi-
tions on the variations. Unfortunately, we also want to
limit the possible wave functions to the class of, what
might be called, "reasonable" functions. This class
seems not to have any very sharp mathematical de6-
nition. Essentially, a "reasonable" wave function is one
for which the associated nuclear potential is reasonable.
We can require, for example, that U, (0)= U, (0)=0;
that U, and U, everywhere be bounded between zero
and the asymptotic functions 9,, and 'K„' that they go
over monotonically to the asymptotic forms; that the
associated potential have not too long a range. For a
problem as ill-defined as this one, an empirical approach
seems advised, even if the reliability of the answer is
left uncertain.

Nearly all the functions which will be tested will

satisfy all of the conditions just listed. The functions
are made to satisfy Eqs. (6) and (9) and their overlap
BK computed in each case. The choice of functions tested
is designed to explore systematically the range between
extreme localization at r=0, and extreme repulsion
from r=0. Our requirement that the functions 6t the
effective ranges establishes a familiar connection.
Namely, functions which are strongly localized at r=0
must become asymptotic more slowly than functions

(a) U, artd U, of Hulthert shape

U, =1 r/a—, es-"
Vg ——e

—&"—e—t'"

$= 1.207, f'= 1.340,

OR = 4.031)1—0.036dp. —0.102dp ~'].

(b) Hard core types

U, =e "'[1 eri E'],— for r)R
=0, for r&E

U, = (1—r/a, )(1—e si' E&], for r)R
=0, for r&E.

TABLE Ig.OR as a function of o and p.

Pga

0.7
0.5
0.3
0

4.031
4.046
4.050
4.072
4.334

0.7

3.987
4.021
4.040
4.080
4.364

0.5

3.908
3.958
3.990
4.041
4.340

0.3

3.643
3.712
3.759
3.828
4.146

The values of $, t, and OR for this case are listed in
Table II as functions of E.

For the case 8=0.6 we also have

OR =4.036L1—0.093dp, '—0.042dp, ].
(c) "3laxsmum" hard core

Ug ——e—&", for r& b,

=0, for r&b,
U, = (1—r/a, ), for r) b,

=0, for r&b, .
Interestingly, the quantities b, and b & are roughly equal.

b, = 1.235, b g= 1.161.

To first approximation 5R is independent of b& here,
hence of pg'.

OR =3.99t 1—0.089dp, ].
(d) U, Hulthert —U, maximum core

BR=3.85.

(e) U, maximum core U, Hulther—t

5K= 3.93.

(f ) Lortg tailed functiorts-
The class of functions considered here has the prop-

erty that the functions become asymptotic rather more
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slowly than the ones considered above, so they must
be closer to asymptotic in the region near r=O. An
interesting analytical realization of the class envisaged
can be achieved with a modified Hultben type, where
we do not require that U, (0) and U, (0) be zero. Thus,
we now consider

Ug ——e—&"—ne
—&"

U, =1 r/a, —pe &',—
and OR can be studied as a function of a and P. Values
of the damping parameters 1 and g, and the overlap
integral BR are given in Tables III and IV.

For the case P= 1, et= 0.5, we also have

OR=3 9085.1 0 14—5dp. &' 0.0—37dp, l
(g) U, lorlg tall —U, nzax core

The case considered here is o.=0.5.
5K=3.66.

(h) U, max core U, long ia—il
Here P=0.5, OR=3.89.

IV. CONCLUSIONS

The theoretical value for r, is obtained merely by
substituting OR into Eq. (4). Suppose we take OR for
the Hulthen case. Then

o, (theor) =0.303 b.

Experimentally, &, is about

o, (exp) =0.330 b.

The difFerence between these two numbers, 0.027 b,
is attributed to the interaction moment. It is 8 percent
of 0330 b.

Now the work in the preceding section shows that
it takes quite unreasonable wave functions to make 5K
much larger than the value obtained for the Hulthen

0.2-

It was found above that it is only with difhculty, for
the extreme cases of the long tailed functions, that 5K
can be made much bigger than about 4.05. The long-
tailed. functions, p=0 and 0.3 and n= 0.3, are limiting
cases which are of interest chieQy because they show
how unreasonable the wave functions have to become
before 5K can be made very large. In these cases the
wave functions actually approach asymptotic so slowly
that they would imply that a significant part of the e-p
interaction would have a range of the order of or greater
than the deuteron radius.

The reliability of the upper limit of 5K can be made
more plausible by considering a reordering of 5K, ac-
cording to the method of Bethe and Longmire. ~ They
find

where
OR=ORe —-', (p,+p, ')+C, (10)

C—= -', L(~,—e,)'—(U,—U.)'|dr.
4 p

Their approximation for BR is obtained if C=0. Now C
goes positive only if the first term of the integrand
dominates the second. But also, to make C positive and
large, the dominating must occur in a region where the
first term is large enough to contribute strongly. Thus,
it is interesting to study the function

~B
Co(Z) —= ~ (e —W,)'dr. (12)

4 p

This function is shown in the accompanying graph
(Fig. 1). Clearly, to obtain C &0.15, say, it is necessary
that U, and/or U, differ considerably from asymptotic
for distances r&3X10 '3 cm. Thus, the long tailed
functions do provide a satisfactory study of large BR.

O.t-

-lb
R(iO cm)

Fzo. 1. The function Co(R).

case. To 6t experiment, 5R would actually have to be
as large as OK("exp") =4.20, well above. the range of
values given by reasonable functions. For the Hulthen
case, 5K lies near the upper end of the range of reason-
able values. Although certain of the repulsive core cases
do give much smaller 5K values, these are mostly inter-
esting as indicating that U~ and U, are probably not
radically difFerent in shape, as we do expect the inter-
action effect to be fairly small. (Thus, the calculation
suggests as an incidental result that the assumption of
a large respulsive core interaction in one of the s states
probably requires a similar core for the other. ) Alto-
gether, from the set of calculations which are listed, "
it seelns plausible to claim about &1—2 percent as the
accuracy with which 5K can be predicted, exclusive of
variations of the efFective ranges, and to take the
Hulthen value as central.

The various errors which must be considered are
(a) o, (exp) is &1 percent; (b) OR is uncertain to &1-'2

~ Additional calculations along the lines of those reported here
were performed by W. A. Newcomb and E. E. Salpeter; see Sal-
peter, Phys. Rev. 82, 60 (1951). Using the measured singlet
efI'ective range, their formulas for Yukawa, Gauss, and exponential
potentials give results in complete agreement with the above
material.
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percent, by virtue of our not knowing the wave func-
tions, so a, (theor) is uncertain to about +3 percent;
(c) because p, is uncertain by &0.2&&10 "cm, OR is
uncertain by about 1 percent, so a, (theor) by &2 per-
cent; (d) because Pn is uncertain by about &2 percent,
p,

' is uncertain by +0.05&(10 "cm, so o, (theoret. ) by
about &2 percent; (e) p& itself is uncertain, leading to
about a &2 percent uncertainty in o, (theor). It is
apparent that these uncertainties can be made to add
up, and even to cancel the interaction moment eGect,
but the errors seem genuinely independent, the square
root of the sum of their squares being 5 percent, so the
egect would seem to be quite real.

With regard to the uncertainty in p&, listed above as
(e), we have both the energy correction from p, (0, —e)

to tot( —c, —e), and also the experimental uncertainty
in p, (0, —e). These enter into o, (theoret. ) both through

X, ' and through 5K, these two appearances partially
canceling. For the above this cancellation has been
considered as about 50 percent complete.

I am grateful to R. Margulies for some assistance with
the numerical work and to J.Blatt, E. E. Salpeter, and
P. Morrison for useful discussions. ~

APPENDIX

Effective Range Theory with Tensor Forces

Two eigenwaves" of the scattering matrix are o,, y
and we label the S and D functions as U & and 8'
These eigenwaves have the property that U and lV
have the same phase shift 8, similarly for state p.
Define rt~ v as rt~ v=lim(W~ «/Ua v). For state n we

f~ 00

assume little D admixture, so this is the state which
scatters strongly. We know g is very small, and q goes
to zero as the energy goes to zero. Since g g&= —1,
state p is mostly D wave, and scatters weakly. State p
can thus be ignored. The following discussion only
applies to state e, so the superscript. can be dropped.

Following the method of Bethe, '4 the coupled
Schrodinger equations are written for two diGerent
energies, multiplied by appropriate functions, and
added judiciously.

O'W' 6$" M
+ $(—E'+ V, 2V—r) W

Br' r2

Therefore,

8'8' O'O' O'W
+W' —U —W

Bf2 Br2 Br~

O'U
UI-

+2v2VrU'j =0.

82'K 82%'

Bf Bf

a'm'

Bf Bf

= (k"—k') (ee'+stl1m'). (A3)

Subtraction of (A1) from (A3) and integration yields
the result

Pg= —'K' +'f(1'
Bf

8%,' Vg'

Bf Bf

= —(1+rtrt') (k cotb —k' cotb') .
Thus,

k cotb —k' cotb'

k' —k"
D 1+q~')WW' UU' WW']d—». (A—4)

1+pe' j,
Suppose E' is taken to be E'=0. Then q'=0, and

k cot5= —1/a+-', k'p(0, E), (A5)

= (k"—k') (UU'+WW'). (A1)

Now consider the comparison functions 'h, Vv".

U~w, 8 ~W.
7=00 r=oo

Including normalizations, the explicit forms for 'll and
'H are

'it= sin(kr+5)/sin8, % = rt sin(kr+5)/sing. (A2)

Then the equation corresponding to (A1) is

O'U M where
U' +—[(E+V.) U+2&VrWj i =0,

aa k
' '

I p (0, E)=2 ('lt'Lp —UUo —WWs), (A6)

I

r)'W 6W M
+ I (E+V 2V )W+.242VrUjl, ()

1Br' r' jP

cl'U' M
U + DE'+V,)U'+2V2V pW—'$ =0,

ar k
'

I

*Note added sn proof One further mea.s—urement of o;(exp)
has since been published. G. von Dardel and A. W. Waltner
)Phys. Rev. 91, 1284 (1953)g give the value 0.321&0.005 barns,
vrhich implies a 6 percent interaction moment contribution.

"For details of this formalism, consult F. Rohrlich and J.
Kisenstein, Phys. Rev. TS, '705 (1949); or J. Schwinger, lectures
on nuclear physics.

4 H. A. Bethe, Phys. Rev. 76, 38 (1949).

and u is the scattering length.
Thus, g drops out when the e6eetive range theory is

referred to zero energy. Inasmuch as only the effective
range p(0, E) has been delned so far, we are still free
to extend the defi.nition and to set

p(Et, Es)—=2 dr('Lli'14 —UiUs —WiWs). (A7)
al 0

This is not the integral which appears in (A4), but it
is just as weH not to have p (Ei, Es) cluttered up with rt's.


