REAZIONI NUCLEARI DI INTERESSE ASTROFISICO

Laura Elisa Marcucci (Università di Pisa e INFN-Pisa) Riassunto del corso:

 teoria del momento angolare → costruzione delle funzioni d'onda

- <u>teoria perturbativa dipendente dal tempo</u>: calcolo della sezione d'urto (e fattore astrofisico)
- <u>funzioni d'onda</u>: stati legati (*d*, ³He, ³H) e stati di scattering (*pp*, *np*, *Nd*) anche con potenziali realistici
- <u>corrente nucleare</u>: termine one-body e meson-exchange currents
- reazioni considerate in dettaglio:

$$p + p \rightarrow d + e^+ + v_e e \quad n + p \rightarrow d + \gamma$$

Campi di applicazione

- Big Bang nucleosynthesis (BBN)
- Produzione solare di energia attraverso una catena di reazioni nucleari

Big Bang nucleosynthesis (BBN) (naive picture)

- Step 1 (kT < few MeV): thermal eq.; *n/p* ~ 1
- Step 2 (kT ~ 0.7 MeV): weak int. freeze-out, $n/p \sim 1/6 \rightarrow 1/7$
- Step 3 (kT ~ 0.5 MeV): nuclear reactions, which form *d*, ³He, ⁴He, ⁷Li

11 key nuclear reactions, among which:

- $n + p \rightarrow d + \gamma$
- $p + d \rightarrow {}^{3}\text{He} + \gamma$
- ${}^{3}\text{H} + \alpha \rightarrow {}^{7}\text{Li} + \gamma$
- ${}^{3}\text{He} + \alpha \rightarrow {}^{7}\text{Be} + \gamma$
- $^{7}\text{Be} + n \rightarrow ^{7}\text{Li} + p$

Solar neutrinos: the pp chain

www.sns.ias.edu/~jnb

The SuperKamiokande (SK) experiment

Elastic scattering $v + e \rightarrow v + e$

Sensitive to all the v, but in fact particularly to v_{e}

The Sudbury Neutrino Observatory (SNO)

Neutrino interactions in D_2O

Charged Current Reaction (CC)

Neutral Current Reaction (NC)

Elastic Scattering (ES)

Total Rates: Standard Model vs. Experiment Bahcall-Pinsonneault 2000

Theoretical calculations: state-of-the-art

- 1) <u>Realistic description of initial and final nuclear bound- and scattering</u> <u>states</u> (*realistic Hamiltonians: two- and three-nucleon interactions*)
- 2) <u>Realistic description of the electro-weak nuclear current</u> (*one-body and meson-exchange currents*)

For both 1) and 2):

- high accuracy
- widely tested especially in the electromagnetic sector (electron scattering)

Marcucci *et al.*, Nucl. Phys. A **777**, 111 (2006) Adelberger *et al.*, Rev. Mod. Phys. **83**, 195 (2011)

 $n + p \rightarrow d + \gamma$

Total cross section [mb] with the AV18

One-body	304.6
Full	332.7
Expt.	332.6(7)

 $p + p \rightarrow d + e^+ + v_e$

$S(E) = E \sigma(E) \exp(2 \pi Z_1 Z_2 \alpha / v)$ $S(E) \approx \Lambda(E)^2$

NN model	AV18	CD-Bonn
One-body	6.965	6.985
Full	7.076	7.060

H.A. Bethe and C.L. Critchfield, Phys. Rev. 54, 248 (1938)

	$r_0 = e^2/mc^2$	$ au_0 = e^2/2 m c^2$	
x_0 .	0.645	0.322	
V_0 (Mev)	20.9	66.5	
D (Mev)	10.3	47.0	
μ.,	2.94	5.45	
y	2.18	4.65	
$(rd \log w/dr)$	0.236	0.110	
$\hat{\Phi}(r_0)$	1.050	1.025	
$\Theta(r_0)$	0.769	0.854	
$(rd \log \Phi/dr)$	0.050	0.025	
Č, Š	0.814	0.915	
λ	2.63	4.80	
Δ1	0.689	0.277	
Λ_2	1.949	1.547	
Aa	1.205	1.030	
$(1+x_0)(1+\mu^{-2})$	1.835	1.367	
Λ	2.84	2.44	
Λ ²	8.08	5.93	

TABLE I. Numerical results for two values of the radius.

¹³ Breit, Condon and Present, Phys. Rev. 50, 825 (1936).

 $n + d \rightarrow {}^{3}\mathrm{H} + \gamma$

Total cross section [mb] (AV18/UIX)

One-Body	0.227
Full	0.556
Expt.	0.508(15)

$$p + d \rightarrow {}^{3}\text{He} + \gamma$$

 $p+^{3}\text{He} \longrightarrow ^{4}\text{He}+e^{+}+v_{e}$: the hep reaction

• $S_{\rm SSM98} = 2.3 \times 10^{-20} \text{ keV b}$

 New calculation (Marcucci et al., PRL 84, 5959 (2000); PRC 63, 015801 (2001)):

1. S (10 keV) = 10.1×10^{-20} keV b

- 2. no c.m. energy dependence
- no Hamiltonian model dependence (if H reproduces accurately the initial and final state w.f.'s)
- 4. importance of the P-waves (40%)
- 5. importance of MEC (Δ)

• SSM revisited (Bahcall *et al.*, Astr. J. 555, 990 (2001)): $S_{\text{SSM00}} = 10.1 \times 10^{-20} \text{ keV b}$

The SK collaboration, PRL 86, 5651 (2001)

Limits

- No clear connection with $QCD \rightarrow model-dependence$
- No clear determination of theoretical uncertainty

Chiral Effective Field Theory (*x***EFT)**

Chiral Effective Field Theory (*x***EFT)**

- $QCD \rightarrow quark and gluons$ ("heavy" degrees of freedom)
- Nuclear physics → nucleons and pions ("light" degrees of freedom)
- EFT \rightarrow processes with $E \sim p \sim m_{\pi} \ll \Lambda_{\text{OCD}} \sim 1 \text{ GeV}$

► "heavy" d.o.f. integrated out \rightarrow contact interactions with "light" d.o.f. and low-energy constants (LECs) obtained from experiment

► perturbative theory: matrix elements $\propto O(p/\Lambda_{OCD})^{\vee}$

 $\chi EFT \rightarrow$ implement EFT and spontaneous breaking of QCD's chiral symmetry

Advantages: a) "right" treatment of πN interaction b) nuclear force "hierarchy" \rightarrow accurate $V_{NN} + V_{NNN}$

Disadvantage: limited to processes occurring at low-energy $E \sim 1-2 \text{ m}_{\pi}$

First steps (~2001): "hybrid" χ EFT

- Nuclear wave functions from realistic phenomenological potentials (AV18, etc)
- Nuclear electroweak current from χEFT

Study of the *pp* and *hep* reactions in agreement with "old" phenomenological ones T.S. Park *et al.*, Phys. Rev. C **67**, 055206 (2003)

On-going work toward a fully consistent χ EFT calculation

Girlanda et al., Phys. Rev. Lett. 105, 232502 (2010)

Fully consistent χEFT calculation

- Nuclear interactions and currents in χEFT at N3LO (three-nucleon interaction at N2LO)
- First χ EFT calculation for $\mu^- + d \rightarrow n + n + \nu_{\mu}$ and $\mu^- + {}^{3}\text{He} \rightarrow {}^{3}\text{H} + \nu_{\mu}$
- On-going work for $p + p \rightarrow d + e^+ + v_e$
- Future work for

$$-p + {}^{3}\text{He} \rightarrow {}^{4}\text{He} + e^{+} + v_{e}$$
$$-p + d \rightarrow {}^{3}\text{He} + \gamma$$

Results (with RC)

	${}^{1}S_{0}$	${}^{3}P_{0}$	${}^{3}P_{1}$	${}^{3}P_{2}$	Γ^D	Γ_0
$IA-\Lambda=500~{\rm MeV}$	238.8	21.1	44.0	72.4	381.7	1362
$IA-\Lambda=600~{\rm MeV}$	238.7	20.9	43.8	72.0	380.8	1360
$FULL-\Lambda=500~{\rm MeV}$	254.4(9)	20.5	46.8	72.1	399.2(9)	1488(9)
$FULL-\Lambda=600~{\rm MeV}$	255(1)	20.3	46.6	71.6	399(1)	1499(9)
$\chi EFT^* - \Lambda = 500 \text{ MeV}$	251.5(7)	20.0	46.6	71.8	395.1(7)	1489(9)

$\Gamma^{D} = 399(3) \text{ s}^{-1} \& \Gamma_{0} = 1494(21) \text{ s}^{-1}$

Marcucci et al., PRL 108, 052502 (2012)

 $\Gamma_0(\exp)=1496(4) \text{ s}^{-1}$

