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ABSTRACTELECTROWEAK STRUCTURE OF THREE-AND FOUR-BODY NUCLEILaura Elisa Mar
u

iOld Dominion University, 2002Dire
tor: Dr. Ro

o S
hiavillaThis work reports results for (i) the elasti
 ele
tromagneti
 form fa
tors of the trin-u
leons; (ii) the nu
lear response fun
tions of interest in ~3He(~e; e0) experiments, atex
itation energies below the deuteron breakup threshold; (iii) the astrophysi
alS-fa
tor for proton weak 
apture on 3He (the hep rea
tion). The initial and �nalstate wave fun
tions are 
al
ulated using the 
orrelated hyperspheri
al harmoni
smethod, from a realisti
 Hamiltonian 
onsisting of the Argonne v18 two-nu
leonand Urbana IX three-nu
leon intera
tions. The nu
lear ele
troweak 
harge and
urrent operators in
lude one- and many-body 
omponents. The predi
ted mag-neti
 form fa
tor of 3H, 
harge form fa
tors and stati
 properties of both 3H and3He, are in satisfa
tory agreement with the experimental data. However, the po-sition of the zero in the magneti
 form fa
tor of 3He is underpredi
ted by theory.The 
al
ulated nu
lear response fun
tions in 3He ele
trodisintegration at thresh-old are in good agreement with the experimental data, whi
h have however ratherlarge errors. Finally, the astrophysi
al S-fa
tor for the hep rea
tion is predi
ted' 4.5 larger than the value adopted in the standard-solar-model, with important
onsequen
es for the solar neutrino spe
trum measured by the Super-Kamiokande
ollaboration.
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Chapter 1Introdu
tionIn a non-relativisti
 approa
h to the study of the stru
ture and dynami
s of few-body nu
lei, these are seen as systems of parti
les, the nu
leons, intera
ting amongthemselves and, eventually, with external ele
troweak probes1. Although basedon a very simple and old idea, this approa
h has quite a remarkable su

ess indes
ribing many nu
lear properties [1℄. The �rst 
ondition for su
h a su

essis the development of a

urate models for the intera
tion among the nu
leonsin a nu
leus. The nu
lear Hamiltonian is written as sum of a non-relativisti
kineti
 energy term and two- and three-nu
leon intera
tions. The main featuresof the nu
leon-nu
leon (NN) intera
tion are a long-range part due to one-pion-ex
hange (OPE), an intermediate-range attra
tion and a short-range repulsion.While the OPE long-range part is well known, the more 
ompli
ated intermediate-and short-range 
omponents 
an be either modelled using heavy-meson-ex
hangeme
hanisms (like in the CD Bonn intera
tion [2℄), or parametrized in terms ofsuitable fun
tions and operators (like in the Argonne v18 (AV18) intera
tion [3℄).The 
oupling 
onstants and 
uto� masses at the mesoni
 verti
es in the �rst
ase, or the fun
tion parameters in the se
ond 
ase are then determined by �ttingthe large body of NN experimental data, not only deuteron properties, but alsopp and np s
attering data at laboratory energies below ' 400 MeV, where thes
attering is predominantly elasti
. The AV18 and CD Bonn intera
tions are1The journal model for this thesis is Physi
al Review C1



CHAPTER 1. INTRODUCTION 2able to des
ribe the NN database with a �2 per datum of almost 1. A nu
learHamiltonian whi
h in
ludes only two-nu
leon intera
tion is however unable toreprodu
e the low-lying energy spe
tra of nu
lei with A � 8 [4, 5℄. A possiblesolution to this problem is to go beyond two-nu
leon intera
tions and introdu
ethree-nu
leon intera
tions. A way of 
onstru
ting these three-nu
leon intera
tionsmakes them arise from the internal stru
ture of the nu
leon. The long-range partof the intera
tion 
an be obtained with the following me
hanism: the ex
hangedpion between two nu
leons ex
ites one of them into its lowest ex
ited state, the�-resonan
e. The �-resonan
e 
an then de
ay again into a nu
leon, ex
hanging apion with a third nu
leon. In the Urbana-type models (for instan
e, the Urbana IX(UIX) [6℄), the long-range part is given by this two-pion-ex
hange three-nu
leonintera
tion, while the short-range part is 
onstru
ted in a pure phenomenologi
alway. The strengths of the long- and short-range 
omponents of the intera
tionare then �tted to reprodu
e the experimental values of the 3H binding energy andnu
lear matter equilibrium density. The full non-relativisti
 nu
lear HamiltonianAV18/UIX has then been found able to des
ribe with good a

ura
y the low-lyingenergy spe
tra of systems with A � 8 [4, 5℄. These models for the two- and three-nu
leon intera
tions, their derivation and their expli
it expressions, are brie
yreviewed in Chapter 2.The strong 
orrelations between the nu
leon spatial and internal degrees offreedom (spin and isospin) indu
ed by the nu
lear intera
tion make the solutionof the S
hr�odinger equation a 
hallenging task, even for the three- and four-bodynu
lei. However, the re
ent remarkable progress in both methods and 
omputa-tional fa
ilities now allow us to make reliable 
al
ulations for ground and s
atteringstates of light nu
lei. We have 
onsidered in parti
ular the so-
alled 
orrelatedhyperspheri
al harmoni
s (CHH) method [7, 8, 9, 10, 11℄. The wave fun
tion isexpanded on a basis of hyperspheri
al harmoni
 fun
tions, multiplied by appro-priate 
orrelation fa
tors, whi
h are introdu
ed to a

ount for the 
orrelationsindu
ed by the NN intera
tion. Appropriate variational prin
iples are then ap-plied to obtain the unknown 
oeÆ
ients of the expansion. Although variational,and in prin
iple limited by the maximum number of basis fun
tions in
luded in the



CHAPTER 1. INTRODUCTION 3expansion, the CHH method has a
hieved high a

ura
y in des
ribing the three-and four-body bound and s
attering states. We review the method in Chapter 3.The approa
h des
ribed so-far would be interesting, but of rather limited util-ity, if it 
ould be tested only 
omparing the theoreti
al and experimental bindingenergies of few-body nu
lei. In fa
t, many experimental results are available over awide range of energies, from the few keV of astrophysi
al interest to the hundredsof MeV measured in ele
tron-s
attering experiments. Sin
e in these pro
esses nu-
lei intera
t with external ele
troweak probes, it is ne
essary to develop realisti
models for the nu
lear 
urrent and 
harge operators. In fa
t, the 
onstru
tionof su
h models has proven to be essential in the study of low-energy ele
troweakpro
esses [1℄. In our model, the nu
lear transition operator 
onsists of one- andmany-body 
omponents. The one-body term, the so-
alled \impulse approxi-mation", arises in the simplest pi
ture in whi
h the ele
troweak probe intera
tswith the individual protons and neutrons inside the nu
leus. This is, however,
ertainly in
omplete: as dis
ussed above, the nu
lear intera
tion is mediated, atlong-range, by pion-ex
hange and seems to be rather well reprodu
ed even atintermediate- and short-range by heavy-meson ex
hanges. These ex
hanged par-ti
les 
an themselves intera
t with the external ele
troweak probe, and this leadsto the introdu
tion of many-body 
urrents. In the ele
tromagneti
 
ase, the lead-ing two-body terms of the 
urrent operator are required by gauge invarian
e, and
an be linked to the model of the NN intera
tion by the 
ontinuity equation.Constru
ting these terms to expli
itly satisfy 
urrent 
onservation with the givenNN intera
tion leaves no free parameters in their expressions. In the weak 
ase,instead, the axial 
urrent operator is not 
onserved and, as su
h, is inherentlymodel dependent. This model dependen
e of its many-body 
omponents 
an beredu
ed by 
onstraining them to reprodu
e measured weak transitions, for exam-ple by �tting the Gamow-Teller matrix element in tritium �-de
ay [12℄. Finally, animportant aspe
t of the 
urrent is that the external ele
troweak probe 
an ex
itethe internal degrees of freedom of the nu
leon, spe
i�
ally its lowest ex
itation,the �-resonan
e. Our approa
h has been extended to in
lude these additional
ontributions arising from �-ex
itation [13, 14℄, 
onsistently with the model for



CHAPTER 1. INTRODUCTION 4the long-range part of the three-nu
leon intera
tion. These �-
ontributions havebeen found rather small in the ele
tromagneti
 
ase [13℄, but very important inweak pro
esses [12, 14℄. The model for the nu
lear transition operator is reviewedin Chapter 4.Within this approa
h, we have investigated three pro
esses: elasti
 ele
tron-s
attering from 3H and 3He [13℄, ele
trodisintegration of 3He at threshold [15℄,and p 3He weak 
apture rea
tion [14, 16℄. For the �rst pro
ess, there is a largebody of experimental results, and a thorough 
omparison between theory andexperiment 
an highlight what, in our approa
h, needs to be improved and re�ned.We have 
al
ulated the trinu
leon form fa
tors on a wide range of momentumtransfer q (from 0 up to 7 fm�1), and stati
 properties like magneti
 moments,and magneti
 and 
harge radii. While the 3H and 3He 
harge form fa
tors andstati
 properties, and the 3H magneti
 form fa
tor are quite well reprodu
ed, our
al
ulation fails to predi
t the 3He magneti
 form fa
tor in the �rst di�ra
tionregion (q � 3 � 4 fm�1). This dis
repan
y persists even in the more re�nedpi
ture of the nu
leus, where �-isobar degrees of freedom are in
luded. Thishas led, on the theoreti
al side, to spe
ulations about the need of a more re�nedmodel for the three-nu
leon intera
tion, and, on the experimental side, to planfor new more a

urate measurements of the 3He magneti
 form fa
tor at q � 3fm�1 [17℄. These results for the trinu
leon elasti
 form fa
tors are presented inChapter 5, together with de�nitions for the observables of interest and details ofthe 
al
ulation.A 
omparison between theory and experiment 
an also be performed in the
ase of the threshold ele
trodisintegration of 3He [15℄, although here the avail-able experimental results have rather large errors. Generally, good agreementhas been found between measured and 
al
ulated observables, when both one-and two-body 
ontributions are in
luded in the ele
tromagneti
 
harge and 
ur-rent operators. Indeed, the 
al
ulation in impulse approximation fails 
ompletelyto reprodu
e the experimental results, further reemphasizing the importan
e ofin
luding many-body 
ontributions in the transition operators. We review this
al
ulation in Chapter 6.



CHAPTER 1. INTRODUCTION 5Unlike the above pro
esses, there are no dire
t experimental results for thep 3He weak 
apture rea
tion, known also as the hep rea
tion{the hep 
ross se
tionis too small to be measured experimentally. However, there has been re
entlya revival of interest in this pro
ess [18, 19, 20, 21, 22℄, spurred by the Super-Kamiokande (SK) measurement of the energy spe
trum of ele
trons re
oiling froms
attering with solar neutrinos [23℄. Over most of the spe
trum, a suppression' 0:5 is observed relative to the standard-solar-model (SSM) predi
tions [24℄.Above 14 MeV, however, there is an apparent ex
ess of events. The hep pro
essis the only sour
e of solar neutrinos with energies larger than about 15 MeV{theirend-point energy is about 19 MeV. The dis
repan
ies between the measured spe
-trum and SSM predi
tions have led to question the reliability of the 
al
ulationsfrom whi
h the SSM derives its hep neutrino 
ux estimate [25℄. The 
al
ulationof the hep rea
tion is rather deli
ate, sin
e the S-wave 
apture indu
ed by theone-body axial 
urrent is suppressed, and 
onsequently many-body axial 
urrentsand P-wave 
ontributions are highly enhan
ed. Within the approa
h des
ribedso-far, we have performed a 
al
ulation of the hep rea
tion, using a

urate CHHwave fun
tions, obtained from the AV18/UIX Hamiltonian model, and in
ludingall possible transitions between the S- and P-wave initial state 
apture 
hannelsand the 4He �nal state. The 
hief 
on
lusion of this study [14, 16℄ is that thehep rea
tion 
ross se
tion is enhan
ed by a fa
tor of ' 4:5 respe
t to the SSMpredi
tion, and 40 % of the total 
al
ulated value arises from the P-wave 
ontri-butions, whi
h were negle
ted, or at least not suÆ
iently appre
iated, in previousstudies [21, 25℄. The main aspe
ts of this 
al
ulation, together with a dis
ussionof the results and their impli
ations, are given in Chapter 7. Con
lusions and �nalremarks are given in Chapter 8.



Chapter 2The Nu
lear Intera
tionIn the simplest pi
ture, the nu
leus is 
onsidered as a system of intera
ting neu-trons and protons. In a non-relativisti
 framework, the Hamiltonian is given by:H =Xi p2i2m +Xi<j vij + Xi<j<kVijk + � � � ; (1)where the nu
leons intera
t via two-, three-, and possibly many-body intera
tions.In this Chapter we brie
y des
ribe some of the dominant features of the two- andthree-nu
leon potential models, fo
using on the Argonne v14 [26℄ and v18 [3℄ two-nu
leon and Urbana VIII [27℄ and IX [6℄ three-nu
leon intera
tions.2.1 Two-Nu
leon Intera
tionsThe two-nu
leon (NN) intera
tion has an extraordinarily ri
h stru
ture, as hasbeen re
ognized for quite a long time. It is des
ribed in terms of the nu
leon'sspin (12�) and isospin (12� ), where both � and � are Pauli matri
es. The formervariable represents the intrinsi
 angular momentum (spin) of the nu
leon, whilethe latter is a 
onvenient representation for its two 
harge states{the proton andneutron. The generalized Pauli prin
iple in this framework requires that two-nu
leon states be antisymmetri
 with respe
t to the simultaneous ex
hange ofthe nu
leons' spa
e, spin, and isospin 
oordinates. The main part of the NNintera
tion is isospin-
onserving and 
an be written as linear 
ombinations of6



CHAPTER 2. THE NUCLEAR INTERACTION 7
omponents proportional to the two isos
alars, 1 and � i � � j. However, isospin-symmetry-breaking terms are also present in the NN intera
tion: in fa
t, theyare ne
essary to reprodu
e with good a

ura
y simultaneously both pp and nplow-energy s
attering data. We will return to this point later.It is well known that the long-range 
omponent of the NN intera
tion is dueto one-pion-ex
hange (OPE). If isospin-symmetry-breaking terms are ignored, itis given, at long distan
es, by:vOPEij = f 2�NN4� m�3 "Y�(rij)�i � �j + T�(rij)Sij#� i � � j; (2)Y�(rij) = e�m�rijm�rij (3)T�(rij) = "1 + 3m�rij + 3(m�rij)2# e�m�rijm�rij ; (4)where m� is the mass of the ex
hanged pion, f�NN is the �NN 
oupling 
onstantand Sij � 3 �i � r̂ij�j � r̂ij � �i � �j (5)is the tensor operator, r̂ij being the relative distan
e between parti
les i and j.At distan
es 
omparable to the inverse pion mass (1=m� � 1:4 fm), OPE leadsto a large tensor 
omponent in the NN intera
tion. In nu
lear systems, then, thespatial and spin degrees of freedom are strongly 
orrelated, and hen
e nu
lear few-and many-body problems 
an be quite di�erent from systems where the dominantintera
tion is independent of the parti
les internal quantum numbers (spin andisospin), su
h as the Coulomb intera
tion in atomi
 and mole
ular problems.At moderate and short distan
es, the NN intera
tion is mu
h more 
ompli-
ated. In this region, heavy-meson-ex
hanges and/or subnu
leoni
 degrees of free-dom all play a role, and the intera
tion models 
an be quite di�erent, ranging fromone-boson-ex
hange (OBE) models to models with expli
it two-pion-ex
hanges(TPE) to purely phenomenologi
al parametrizations. The models are then �t toreprodu
e the available NN experimental data. The Argonne v14 [26℄ intera
tionmodel (AV14), in parti
ular, falls in the last 
ategory of purely phenomenologi
al



CHAPTER 2. THE NUCLEAR INTERACTION 8parametrization and is parametrized as:vij(r) =Xp [vOPEp (r) + vIp(r) + vSp (r)℄Opij ; (6)where Opij is the set of 14 operators given byOpij = h1; �i � �j ; Sij ; (L � S)ij ; L2ij ; L2ij�i � �j ; (L � S)2iji
 [1; � i � � j℄ : (7)Here L is the relative orbital angular momentum and S the spin of the pair. The�rst eight of these operators (those not involving two powers of the momentum) areunique, in the sense that all su
h operators are impli
itly 
ontained in any realisti
NN intera
tion model. The primary motivation for the 
hoi
e of the higher-orderterms is 
onvenien
e in few- and many-body 
al
ulations: for example, the L2terms do not 
ontribute in relative S-waves. This set of 14 operators providesuÆ
ient freedom to �t the phase-shift and mixing angle parameters of the 14singlet and triplet relative S-, P-, D- and F-waves.The three radial fun
tions of Eq. (6) are the long-range OPE part and theintermediate- and short-range parts vIp(r) and vSp (r). The vOPEp (r) fun
tion 
on-tributes only for the operators[�i � �j ; Sij ℄
 � i � � j (8)as dis
ussed above, and it is given by Eqs. (2){(4), where Y� and T� are 
al
ulatedusing f 2�NN=4� = 0:081 (for the AV14) and are multiplied by smooth Gaussian
uto�s that make them vanish at r = 0. The vIp(r) are parametrized as fun
tionsproportional to T 2� , de�ned in Eqs. (2)-(4), and 
onsequently of two-pion-ex
hangerange. The vSp (r) are short-range Woods-Saxon fun
tions. The parameters ofthe Woods-Saxon fun
tions, as well as the 
oeÆ
ient for vIp(r), are adjusted toreprodu
e the deuteron properties and np s
attering data up to 400 MeV.Before the early nineties, all the di�erent NN intera
tion models, the AV14as well as the available models based on OBE or TPE me
hanisms, produ
ed aqualitatively similar pi
ture of the NN intera
tion, 
onsisting of OPE at longrange, an intermediate-range attra
tion and a short-range repulsion. However,



CHAPTER 2. THE NUCLEAR INTERACTION 9quantitatively, all these models were somewhat di�erent. There were several rea-sons for this, 
hief among them was that they were in fa
t not all �t to the samedata set. For example, models �t to np data, like the AV14, did not pre
isely �tthe experimental pp data if only ele
tromagneti
 
orre
tions were introdu
ed.When in the early nineties high quality phase shift analyses of the pp andnp data be
ame available from the Nijmegen and VPI groups [28, 29, 30, 31, 32,33, 34℄, several new NN intera
tion models were 
onstru
ted to reprodu
e thisimproved experimental database. As most important 
onsequen
e, all the newgenerationNN intera
tion models whi
h are still in use today give a quantitativelysimilar pi
ture of the NN intera
tion.Among these new models, the Argonne v18 (AV18) intera
tion [3℄ follows basi-
ally along the lines of its prede
essor, the AV14. In fa
t, it 
an be expressed as thesum of a 
harge-independent (CI) and a 
harge-symmetry-breaking (CSB) part.The former has the same 14 operators 
omponents of the AV14, although thereare some di�eren
ies: (i) the 
harged and neutral pion mass splitting is taken intoa

ount; (ii) the Nijmegen partial-wave analysis has found very little di�eren
ebetween the 
oupling 
onstants f�oNN and f��NN , and therefore f�NN is 
hosento be 
harge-independent; its value (f 2�NN=4�=0.075) is somewhat smaller than inthe AV14; (iii) the ele
tromagneti
 intera
tion, spe
i�ed along with the strong in-tera
tion, and treated up to order �2, � being the �ne stru
ture 
onstant, 
onsistsof one- and two-photon Coulomb terms, Darwin-Foldy and va
uum polarization
ontributions, and magneti
 moment intera
tions [35℄.The CSB term has three 
harge-dependent and one 
harge-asymmetri
 oper-ators: these four operators are the minimal requirement in order to provide apre
ise �t of the np and pp database simultaneously. They are given by:Op=15:::18ij = Tij ; �i � �jTij ; SijTij ; (�i;z + �j;z) ; (9)where the isotensor operator is de�ned asTij = 3�i;z�j;z � � i � � j : (10)With a total of 40 adjustable parameters, the AV18 intera
tion is able to reprodu
ethe NN database with a �2 per degree of freedom near one. Note that this large



CHAPTER 2. THE NUCLEAR INTERACTION 10number of parameters is a feature 
ommon to all the intera
tion models of thepast de
ade.2.2 Three-Nu
leon Intera
tionsAll the two-nu
leon intera
tions whi
h 
ontain non-lo
alities only at the level oftwo powers of the relative momentum (p2 or L2), as in the 
ase of the AV14and AV18, have been found to yield nearly identi
al results for the triton bindingenergy, 7.62�0.01 MeV as 
ompared to the experimental value of 8.48 MeV [36℄.Furthermore, the equilibrium density of nu
lear matter is overpredi
ted. One wayto solve this dis
repan
y is to in
lude three-nu
leon intera
tions in the nu
learHamiltonian.A simple model for the three-nu
leon intera
tions makes them arise from theinternal stru
ture of the nu
leon. Sin
e all degrees of freedom other than thenu
leons have been integrated out, the presen
e of nu
lear resonan
es, su
h asthe �-resonan
e, indu
es three-body for
es. The long-range term involving theintermediate ex
itation of a �-isobar, via pion ex
hanges, is illustrated in Fig. 1.The two-pion-ex
hange three-nu
leon intera
tion (2�TNI) was originally writtendown by Fujita and Miyazawa [37℄:V 2�ijk = A2�" fXij ; Xikg f� i � � j ; � i � � kg+ 14 [Xij ; Xik℄ [� i � � j ; � i � � k℄ # ; (11)where A2� = �f�N�m� �2�f�NNm� �2 1m�m� ; (12)Xij = Y�(rij)�i � �j + T�(rij)Sij : (13)f�N�, m, and m� are respe
tively the �N� 
oupling 
onstant, the nu
leon andthe � masses and f� � �g ([� � �℄) denote the anti
ommutators (
ommutators). Thisintera
tion has been found to be attra
tive in light nu
lei.



CHAPTER 2. THE NUCLEAR INTERACTION 11The Urbana models for the three-nu
leon intera
tions, the older UrbanaVIII [27℄ (UVIII) and the more re
ent Urbana IX [6℄ (UIX), are written as thesum of the 2�TNI plus a phenomenologi
al shorter-range term of the form:V Rijk = U0T 2� (rij)T 2� (rik) : (14)This term is of two-pion-ex
hange range on ea
h of the two legs, and is meant tosimulate the dispersive e�e
ts whi
h are required when integrating out �-isobardegrees of freedom. This phenomenologi
al short-range term is repulsive, and ishere taken to be independent of spin and isospin.The 
onstants A2� and U0 in Eqs. (11) and (14) are adjusted to reprodu
e thetriton binding energy in \exa
t" Green's fun
tion Monte Carlo (GFMC) 
al
ula-tions [4℄, and the nu
lear matter equilibrium density in variational 
al
ulationsbased on operator-
hain expansion [38℄. Re
ent GFMC 
al
ulations based on theAV18/UIX Hamiltonian model have been shown to provide a reasonable des
rip-tion of the low-energy spe
tra and 
harge radii of nu
lei with A �8 [4, 5℄.

FIG. 1: The Fujita and Miyazawa two-pion-ex
hange three-nu
leon intera
tiondiagram. Thin, thi
k, and dashed lines denote, respe
tively, nu
leons, �-isobarsand pions.



Chapter 3Bound- and S
attering-StateWave Fun
tionsGiven a model for the nu
lear Hamiltonian, the next step 
onsists in obtaining thenu
lear bound and s
attering states, and in 
omparing the 
al
ulated observableswith the available experimental data. Although the nu
lear intera
tion modelsdes
ribed in the previous Chapter are quite simple to write down, the solution ofthe S
hr�odinger equation, even for the three- and four-nu
leon systems, is a very
hallenging task. This is mainly due to the strong 
orrelation between the spatialand internal degrees of freedom (spin and isospin) of the nu
leons present in theseintera
tions.Several te
hniques have been developed through the years to solve this problemand intense e�ort 
ontinues to go on for their implementation. For the three-nu
leon system, there is a long history of numeri
al methods: one of the mostestablished one is the Faddeev method. The basi
 idea of this te
hnique is torewrite the S
hr�odinger equation as a sum of three equations in whi
h (for two-nu
leon intera
tions at least) only one pair intera
ts at a time. The resultingequations are solved in either momentum- or 
oordinate-spa
e. The Faddeev(and Faddeev-Yakubovsky) methods have been applied to solve the bound as wellas the s
attering states of three- and, re
ently, four-nu
leon systems [39, 40, 41℄.While these te
hniques are in prin
iple \exa
t", their implementation, parti
ularly12
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e, is diÆ
ult when the Coulomb intera
tion is present, su
h as,for example, in the pd and p 3He s
attering 
hannels. In fa
t, at this point in time,we are not aware of any Faddeev 
al
ulation for the p 3He s
attering problem.Te
hniques based on quantum Monte Carlo methods have been also developedto solve the problem of few-body nu
lei, with mass number A � 8 [4, 5℄, and are
urrently being extended to treat systems with A = 9. These are the variationalMonte Carlo (VMC) and the Green's fun
tion Monte Carlo (GFMC) te
hniques.The VMC is an approximate variational method that uses Monte Carlo te
hniquesto perform the spatial integrations. The GFMC method, on the other hand,employs Monte Carlo te
hniques to evaluate the imaginary-time path integralsrelevant for a light nu
leus. It typi
ally uses the VMC wave fun
tions as a startingpoint, and 
ools them in order to measure ground-state observables.More re
ently, the few-body systems with A � 4 have also been studied witha variational te
hnique known as the 
orrelated-hyperspheri
al-harmoni
s (CHH)method, developed by Kievsky, Viviani, and Rosati [7, 8, 9, 10, 11, 15, 42, 43,44, 45, 46, 47℄. This method 
onsists in expanding the wave fun
tion over a basisof hyperspheri
al harmoni
 fun
tions multiplied by 
orrelation fa
tors. Althoughvariational and in prin
iple limited by the maximum number of basis fun
tionskept in the expansion, this te
hnique has a
hieved high a

ura
y in des
ribingthe three- and four-body bound and s
attering states. In fa
t, we have usedthis method to 
al
ulate the 3H, 3He and 4He wave fun
tions and the pd andp 3He s
attering-state wave fun
tions at energies below deuteron and 3He breakupthresholds, respe
tively.This Chapter is divided into two Se
tions: in Se
tion 3.1 we review the CHHmethod for the bound state problem, while in Se
tion 3.2 we des
ribe the CHHmethod for the s
attering problem.3.1 The Bound-State Wave Fun
tionsIn this Se
tion, we des
ribe the main features of the CHH method, when appliedto 
al
ulate the trinu
leon wave fun
tions in Subse
tion 3.1.1, and the �-parti
le
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tion in Subse
tion 3.1.2.3.1.1 The Three-Nu
leon Wave Fun
tionThe wave fun
tion 	 of a three-nu
leon system with total angular momentum JJzand total isospin TTz 
an be de
omposed as	 = 3Xi=1  (xi;yi) ; (15)where the amplitude  (xi;yi) is a fun
tion of the Ja
obi 
oordinates xi = rj � rkand yi = (rj + rk � 2 ri) =p3, i,j,k being a 
y
li
 permutation of 1,2,3. To ensurethe overall antisymmetry of 	, the amplitude  (xi;yi) is antisymmetri
 withrespe
t to ex
hange of nu
leons j and k, and is expressed as [8, 9℄ (xi;yi) =X� F���(xi; yi)Y�(j; k; i) ; (16)Y�(j; k; i) = �hY`�(bxi)
 YL�(byi)i�� 
 hSjk� 
 siiS��JJzhT jk� 
 tiiTTz ; (17)where ea
h 
hannel � is spe
i�ed by the orbital angular momenta `�, L� and ��,the spin (isospin) Sjk� (T jk� ) of pair jk and the total spin S�. Orbital and spinangular momenta are 
oupled, in the LS-
oupling s
heme, to give total angularmomenta JJz. The 
orrelation fa
tor F� takes into a

ount the strong statedependent 
orrelations indu
ed by the NN intera
tion. Two di�erent forms havebeen employed for F�: F� = f�(rjk) � f�(xi) ; (18)F� = f�(rjk)g�(rij)g�(rik) : (19)In the �rst 
ase, the wave fun
tion in
ludes 
orrelation e�e
ts only between nu-
leons j and k in the a
tive pair, while in the se
ond 
ase, the wave fun
tionin
ludes in addition 
orrelation e�e
ts between these and the spe
tator nu
leon i.Traditionally, the method is known as pair-
orrelated hyperspheri
al harmoni
s(PHH) method when the �rst 
hoi
e of the 
orrelation fa
tor is employed. For



CHAPTER 3. BOUND- AND SCATTERING-STATE WAVE FUNCTIONS 15realisti
 soft-
ore potentials, like the AV14 or AV18, the 
onvergen
e pattern withrespe
t to the number of basis fun
tions appears to be somewhat faster in the PHHexpansion than in the CHH one. This is not true in the 
ase of the �-parti
le.Therefore, we have used the PHH expansion to solve the three-body problem andthe CHH one in the study of the �-parti
le.The (
hannel-dependent) 
orrelation fun
tions f�(rjk) are obtained with thefollowing pro
edure: when two of the nu
leons are 
lose to ea
h other and farremoved from the others, it is expe
ted that their wave fun
tion will be pre-dominantly in
uen
ed by their mutual intera
tion. The radial wave fun
tion fortwo parti
les in state �=j� l� Sjk� T jk� is then obtained from solutions of two-bodyS
hr�odinger-like equationsX�0 [T�;�0(r) + v�;�0(r) + ��;�0(r)℄f�0(r) = 0 : (20)T�;�0 and v�;�0 are the kineti
 and potential energy operators,T�;�0 = �h2m " �2�r2 + 2r ��r � l�(l� + 1)r2 #Æ�;�0 ; (21)v�;�0 = h�jvjkj� 0i (22)and vjk is the NN intera
tion. The term ��;�0(r) in Eq. (20) simulates the e�e
tof the intera
tion of the a
tive pair with the remaining parti
les in the system andis 
hosen to be of the simple form��;�0(r) = �0�e�
rÆ�;�0 ; (23)where �0� and 
 are two parameters that allow f�(r) to satisfy appropriate bound-ary 
onditions. For more details, see Refs. [7, 8℄.Next, we introdu
e the hyperspheri
al 
oordinates � and �i, de�ned as� = qx2i + y2i ; 
os �i = xi=� : (24)Note that the hyper-radius � is independent on the permutation i 
onsidered. Thedependen
e of ��(xi; yi) on � and �i is then made expli
it by writing��(xi; yi) = M�Xn=0 u�n(�)�5=2 Z�n (�i) ; (25)
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os�i)`�(sin�i)L� P `�+ 12 ;L�+ 12n (
os 2�i) ; (26)where N `�;L�n are normalization fa
tors, P �;�n are Ja
obi polynomials and n isa non-negative integer, n = 0; � � � ;M�, M� being the sele
ted number of basisfun
tions in 
hannel �. The 
omplete wave fun
tion is then written as	 = Xijk 
y
li
X� f�(xi)Y�(j; k; i) M�Xn=0 u�n(�)�5=2 Z�n (�i) : (27)The Rayleigh-Ritz variational prin
iple,hÆu	jH � Ej	i = 0 ; (28)is used to determine the hyper-radial fun
tions u�n(�) in Eq. (27). Carrying outthe variation Æu	 with respe
t to the fun
tions u�n(�), the following equation iseasily derived: Xijk 
y
li
hf�(xi)Y�(j; k; i)Z�n (�i)jH � Ej	i j
= 0 ; (29)where 
 denotes the angular variables �i, x̂i and ŷi. Performing the integrationover 
 and spin-isospin sums (as impli
itly understood by the notation h� � �i j
)leads to a set of 
oupled se
ond order di�erential equations for the u�n(�), whi
his then solved by standard numeri
al te
hniques [7, 8℄.The binding energies in MeV of the A=3 nu
lei obtained with the PHH methodfrom the AV14, AV18, AV14/UVIII and AV18/UIX Hamiltonians are listed in Ta-ble I [9℄. Also listed in Table I are results 
al
ulated with 
onverged 
on�guration-spa
e [40℄ and momentum-spa
e [41℄ Faddeev wave fun
tions for the AV14, andwith the GFMC method [4℄ for the AV18/UIX potential model. The bindingenergies obtained with the various methods are in ex
ellent agreement with ea
hother, typi
ally within 10 keV or less.3.1.2 The 4He Wave Fun
tionThe CHH approa
h has also been applied to the four-nu
leon problem [10, 11,46℄. When studying the 4He nu
leus, it is 
onvenient to 
onsider the two sets of
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leons binding energies in MeV 
orresponding to the AV14, AV18,AV14/UVIII and AV18/UIX Hamiltonian models. The PHH results for the AV14potential are 
ompared with those 
al
ulated by solving the Faddeev equations in
on�guration- (F/R) and in momentum-spa
e (F/P). Also we 
ompare the PHHand the GFMC results when the AV18/UIX potential model is used. The GFMCstatisti
al errors are shown in parenthesis.Model Method B(3H) B(3He)PHH 7.683 7.032AV14 F/R 7.670 7.014F/P 7.680 {AV18 PHH 7.640 6.930AV14/UVIII PHH 8.47 7.73AV18/UIX PHH 8.49 7.75GFMC 8.47(1) 7.71(1)expt. 8.48 7.72
Ja
obi 
oordinates, whi
h 
orrespond to the partitions 1+3 and 2+2. The Ja
obivariables 
orresponding to the partition 1+3 are de�ned asxAp = rj � ri ; (30)yAp = q4=3(rk �Rij) ; (31)zAp = q3=2(rl �Rijk) ; (32)while those 
orresponding to the partition 2+2 are de�ned asxBp = rj � ri ; (33)yBp = p2(Rkl �Rij) ; (34)zBp = rl � rk ; (35)where Rij (Rkl) and Rijk denote the 
enter-of-mass positions of parti
les ij (kl)and ijk, respe
tively. The wave fun
tion 	 is then expanded as	 =Xp h A(xAp;yAp; zAp) +  B(xBp;yBp; zBp)i ; (36)



CHAPTER 3. BOUND- AND SCATTERING-STATE WAVE FUNCTIONS 18where the index p runs over the even permutations of parti
les ijkl.The pro
edure is similar to the one used for the three-nu
leon problem andthe amplitudes  A and  B are expanded as A(xAp;yAp; zAp) =X� F�;p �A� (xAp; yAp; zAp) Y A�;p ; (37) B(xBp;yBp; zBp) =X� F�;p �B� (xBp; yBp; zBp) Y B�;p ; (38)whereY A�;p = �h[Y`1�(ẑAp)Y`2�(ŷAp)℄`12�Y`3�(x̂Ap)iL��h[sisj℄Sa�skiSb�sl�S��JJz��h[titj℄Ta�tkiTb�tl�TTz ; (39)Y B�;p = �h[Y`1�(ẑBp)Y`2�(ŷBp)℄`12�Y`3�(x̂Bp)iL��[sisj℄Sa�[sksl℄Sb��S��JJz��[titj℄Ta�[tktl℄Tb��TTz : (40)Here a 
hannel � is spe
i�ed by: orbital angular momenta `1�, `2�, `3�, `12�, andL�; spin angular momenta Sa�, Sb�, and S�; isospins Ta� and Tb�. The total orbitaland spin angular momenta and 
luster isospins are then 
oupled to the assignedJJz and TTz. The overall antisymmetry of the wave fun
tion 	 is ensured byrequiring that both  A and  B 
hange sign under the ex
hange i *) j.The 
orrelation fa
tors F�;p is written, similarly to Eq. (19), as produ
t of
orrelation fun
tions, that are obtained from solutions of two-body S
hr�odinger-like equations, as dis
ussed in the previous Subse
tion and, in more details, inRef. [10℄.The radial amplitudes �A� and �B� are further expanded as�A�(xAp; yAp; zAp) = Xn;m u�nm(�)�4 z`1�Ap y`2�Ap x`3�Ap X�nm(�A2p; �3p) ; (41)�B� (xBp; yBp; zBp) = Xn;m w�nm(�)�4 z`1�Bp y`2�Bp x`3�Bp X�nm(�B2p; �3p) ; (42)



CHAPTER 3. BOUND- AND SCATTERING-STATE WAVE FUNCTIONS 19where the magnitudes of the Ja
obi variables have been repla
ed by the hyper-spheri
al 
oordinates, whi
h in the four-body 
ase are given by:� = qx2Ap + y2Ap + z2Ap = qx2Bp + y2Bp + z2Bp ; (43)
os �3p = xAp=� = xBp=� ; (44)
os �A2p = yAp=(� sin�3p) ; (45)
os �B2p = yBp=(� sin�3p) : (46)As in the three-body 
ase, the hyper-radius is independent of the permutation p
onsidered.Finally, the hyper-angle fun
tions X�nm 
onsist of the produ
t of Ja
obi poly-nomialsX�nm(�; 
) = N�nm (sin�)2mPK2�;`3�+ 12n (
os 2�)P `1�+ 12 ;`2�+ 12m (
os 2
) ; (47)where the indi
es m and n run, in prin
iple, over all non-negative integers, K2� =`1� + `2� + 2m+ 2, and N�nm are normalization fa
tors [10℄.On
e the expansions for the radial amplitudes �A and �B are inserted intoEqs. (37) and (38), the wave fun
tion 	 
an s
hemati
ally be written as	 = X�nm z�nm(�)�4 Z�nm(�;
) ; (48)where z(�) stands for either u(�) or w(�) (yet to be determined), depending onwhether 
hannel � is 
onstru
ted with partitions 1+3 or 2+2, and the fa
tor Z�nmin
ludes the dependen
e upon the hyper-radius � due to the 
orrelation fun
tions,and the angles and hyper-angles, denoted 
olle
tively by 
.Again, the Rayleigh-Ritz variational prin
iple given in Eq. (28) is used todetermine the hyper-radial fun
tions z�nm(�) in Eq. (48) and ground-state energyE: the pro
edure is exa
tly the same as in the three-body problem.The present status of 4He [10, 46℄ binding-energy 
al
ulations with the CHHmethod is summarized in Table II. The binding energies 
al
ulated with the CHH



CHAPTER 3. BOUND- AND SCATTERING-STATE WAVE FUNCTIONS 20method using the AV18 or AV18/UIX Hamiltonian models are within 1.5 % of
orresponding GFMC results [4℄, and of the experimental value (when the three-nu
leon intera
tion is in
luded). The agreement between the CHH and GFMCresults is less satisfa
tory when the AV14 or AV14/UVIII models are 
onsidered,presumably be
ause of slower 
onvergen
e of the CHH expansions for the AV14intera
tion. This intera
tion has tensor 
omponents whi
h do not vanish at theorigin.TABLE II: Binding energies in MeV of 4He 
al
ulated with the CHH method usingthe AV18 and AV18/UIX and the older AV14 and AV14/UVIII potential models.Also listed are the 
orresponding \exa
t"GFMC results [4℄ and the experimentalvalue. The GFMC statisti
al errors are shown in parenthesis.Model CHH GFMCAV18 24.01 24.1(1)AV18/UIX 27.89 28.3(1)AV14 23.98 24.2(2)AV14/UVIII 27.50 28.3(2)expt. 28.3
3.2 The S
attering-State Wave Fun
tionsThe PHH and CHH methods have also been used to 
al
ulate the wave fun
tionsin three- and four-body s
attering problems. The three-body s
attering problemhas been studied with the PHH method both below and above deuteron breakupthreshold [8, 9, 45℄, while for the four-body s
attering problem, only the p 3He andn 3H systems have been studied, below breakup. We dis
uss here the appli
ationof the method to the pd (nd) and p 3He (n 3H) 
ases, below the deuteron and 3He(3H) breakup threshold.In Subse
tion 3.2.1 we des
ribe the te
hnique for the s
attering-state wavefun
tion, and in Subse
tion 3.2.2 we present some results for the three- and four-body problems.
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attering-State Wave Fun
tionsThe wave fun
tion 	LSJJz1+A , having in
oming orbital angular momentum L and
hannel spin S (S = 1=2; 3=2 for Nd and S = 0; 1 for p 3He and n 3H) 
oupled tototal JJz, is expressed as 	LSJJz1+A = 	JJz
 +	LSJJza ; (49)where 	
 vanishes in the limit of large inter
luster separation, and hen
e de-s
ribes the system in the region where the parti
les are 
lose to ea
h other andtheir mutual intera
tions are large. In the asymptoti
 region, where inter
lusterintera
tions are negligible, 	LSJJza , in the p+A-
luster 
ase, is written as	LSJJza = Xi XL0S0 h[si 
 �A℄S0 
 YL0(r̂pA)iJJz�"ÆLL0ÆSS0FL0(prpA)prpA +RJLS;L0S0(p)GL0(prpA)prpA g(rpA)# ; (50)where �A, rpA and p are respe
tively the A-
luster wave fun
tion, the protonand A-
luster relative distan
e and magnitude of the relative momentum. Thefun
tions FL and GL are the regular and irregular Coulomb fun
tions, respe
tively.Note that for nd and n 3H s
attering, FL(x)=x and GL(x)=x are to be repla
ed bythe regular and irregular spheri
al Bessel fun
tions. The fun
tion g(rpA) modi�esthe GL(prpA) at small rpA by regularizing it at the origin, and g(rpA) ! 1 asrpA � 10� 12 fm, thus not a�e
ting the asymptoti
 behavior of 	LSJJz1+A . Finally,the real parameters RJLS;L0S0(p) are the R-matrix elements whi
h determine phase-shifts and (for 
oupled 
hannels) mixing angles at the energy p2=(2�), � being the1+A redu
ed mass. Of 
ourse, the sum over L0S 0 is over all values 
ompatiblewith a given J and parity.The \
ore" wave fun
tion 	
 is expanded in the same PHH or CHH basis asdis
ussed in Subse
tions 3.1.1 and 3.1.2. Both the matrix elements RJLS;L0S0(p)and the hyper-radial fun
tions o

urring in the expansion of 	
 are determinedapplying the Kohn variational prin
iple, whi
h states that the fun
tional[RJLS;L0S0(p)℄ = RJLS;L0S0(p)� h	L0S0JJz1+A jH � EA � p22� j	LSJJz1+A i (51)
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t to variations in the RJLS;L0S0 and the hyper-radialfun
tions. Here EA = �2:225 MeV is the deuteron energy in the three-bodyproblem and EA = �7:72 MeV (EA = �8:48 MeV) is the 3He (3H) energy in thefour-body problem.3.2.2 Results for Three- and Four-Body S
attering Prob-lemsTo 
he
k the validity of the CHH approa
h for the s
attering problem, phase-shiftsand mixing angles for nd s
attering at energies below the three-body breakupthreshold obtained from the AV14 have been 
ompared with the 
orrespondingFaddeev-Yakubovsky results [47℄. The agreement between these two te
hniqueshas been found ex
ellent, thus establishing the high a

ura
y of the CHH methodfor the s
attering problem. It is important to reemphasize that this s
heme,in 
ontrast to momentum-spa
e Faddeev methods, permits the straightforwardin
lusion of Coulomb distortion e�e
ts in the pd 
hannel. Therefore, the resultsfor pd elasti
 s
attering are presumably as a

urate as those for nd s
attering.Several results have been obtained in the last few years for the s
atteringobservables of the three-body problem. Here we only list in Table III the ndand pd doublet and quartet s
attering lengths predi
ted by the AV18/UIX model,whi
h are found to be in ex
ellent agreement with the available experimentalvalues.TABLE III: Predi
tions obtained from the AV18/UIX Hamiltonian model withthe PHH method for the nd and pd doublet and quartet s
attering lengths a2 anda4. a2 (fm) a4 (fm)PHH expt. PHH expt.nd 0.63 0.65 � 0.04 6.33 6.35 � 0.02pd {0.02 13.7A similar 
omparison between the CHH and Faddeev-Yakubovsky methods
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an be done for the four-body problem, 
omparing the singlet and triplet s
at-tering lengths for the n 3H zero-energy s
attering problem 
al
ulated with theAV14. These results are given in Table IV. Also listed there, are the p 3He singletand triplet s
attering lengths predi
ted by the AV18, AV18/UIX and the olderAV14/UVIII models, 
ompared with the 
orresponding experimental values. Thelatter, however, have rather large errors. In fa
t, these p 3He data have been ex-trapolated to zero energy from measured data taken above 1 MeV, and therefore
ould su�er also of large systemati
 un
ertainties.The lowest energy measurements for p 3He elasti
 s
attering have been taken ata 
enter-of-mass (
.m.) energy of 1:2 MeV, and 
onsist in di�erential 
ross se
tion�(�) [48℄ and proton analyzing power Ay(�) [49℄ data (� is the 
.m. s
atteringangle). The theoreti
al predi
tion for �(�) obtained from the AV18 and AV18/UIXintera
tions, is 
ompared with the 
orresponding experimental data in Fig. 2.Inspe
tion of the �gure shows that the di�erential 
ross se
tion 
al
ulated withthe AV18/UIX model is in ex
ellent agreement with the data, ex
ept at ba
kwardangles, where the experimental 
ross se
tion is slightly underpredi
ted. A detailedstudy of p 3He elasti
 s
attering is 
urrently underway [50℄.TABLE IV: Singlet as and triplet at S-wave s
attering lengths (fm) for n 3H s
at-tering 
al
ulated with the AV14 and p 3He s
attering 
al
ulated with the AV18,AV18/UIX and the older AV14/UVIII potential models. The n 3H Faddeev resultsand the p 3He experimental values are also listed.Method Model n 3H p 3Heas at as atCHH AV14 4.32 3.80Faddeev AV14 4.31 3.79CHH AV18 12.9 10.0CHH AV18/UIX 11.5 9.13CHH AV14/UVIII 9.24expt. 10.8�2.6 8.1�0.510.2�1.5
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FIG. 2: Di�erential 
ross se
tion �(�) as fun
tion of the 
.m. s
attering angle �,at 
.m. energy of 1:2 MeV. The experimental data are taken from Ref. [48℄. Thelong-dashed and solid lines 
orrespond, respe
tively, to the CHH 
al
ulations withthe AV18 and AV18/UIX Hamiltonian models.



Chapter 4The Nu
lear Transition OperatorsIn studying pro
esses where the stru
ture of the nu
leus is investigated using ele
-tromagneti
 or weak probes, the 
onstru
tion of a realisti
 model for the nu
learele
troweak 
urrent and 
harge operators be
omes a fundamental aspe
t of the
al
ulation. When su
h studies are 
arried out in the simplest pi
ture of the nu-
leus, a non-relativisti
 many-body theory of intera
ting nu
leons, the ele
troweak
urrent and 
harge operators are expressed in terms of those asso
iated with theindividual protons and neutrons, the so-
alled \impulse approximation"(IA) (wewill refer to these also as \one-body"operators). Su
h a des
ription, however, is
ertainly in
omplete. As already dis
ussed in Chapter 2, the NN intera
tion ismediated, at long distan
es, by pion-ex
hange, and seems to be rather well de-s
ribed by a boson-ex
hange pi
ture even at intermediate- and short-range. Thusthe ele
troweak probe 
an intera
t with these ex
hanged parti
les, and this leadsto the introdu
tion of e�e
tive many-body 
urrent and 
harge operators. It shouldbe realized that these many-body operators arise, as does the NN intera
tion it-self, as a 
onsequen
e of the elimination of the mesoni
 degrees of freedom fromthe nu
lear state ve
tor. Clearly, su
h an approa
h is justi�ed only at energiesbelow the threshold for meson (spe
i�
ally, pion) produ
tion, sin
e above thisthreshold these non-nu
leoni
 degrees of freedom have to be expli
itly in
luded inthe state ve
tor.Although very su

essful in giving a quantitative predi
tion of many nu
lear25



CHAPTER 4. THE NUCLEAR TRANSITION OPERATORS 26observables [1℄, this pi
ture of the nu
leus has to be 
onsidered greatly simpli-�ed. The nu
leons, whi
h are taken as e�e
tive 
onstituents of the nu
leus, arein fa
t 
omposite parti
les (
lusters of quark and gluons, in quantum 
hromo-dynami
s), and the ele
tromagneti
 and weak probes 
an therefore ex
ite theirinternal degrees of freedom. To investigate the 
ontribution from these pro
esses,we have in
luded in our approa
h the lowest ex
itation of the nu
leon, the �-resonan
e [13, 14℄. Although these �-
ontributions have been found to be rathersmall in the ele
tromagneti
 
ase [13℄, they are very important in weak pro
esses,espe
ially in the hep rea
tion [14, 16, 25, 51℄. We will return to these issues inmore detail below and in the next Chapters.This Chapter is divided into two main parts: in the �rst one, we des
ribe theele
tromagneti
 
urrent and 
harge operators, in the se
ond we dis
uss the modelfor the weak transition operator, both its ve
tor and axial-ve
tor 
omponents.4.1 The Ele
tromagneti
 Transition OperatorsIn this se
tion we des
ribe the model for the ele
tromagneti
 
urrent and 
hargeoperators. First, we dis
uss the model when only nu
leoni
 degrees of freedomare 
onsidered (Subse
tions 4.1.1{4.1.4). In the se
ond part of this Se
tion, wedes
ribe the extended model wave fun
tion and 
urrent operators that in
lude�-isobar degrees of freedom (Subse
tions 4.1.5 and 4.1.6).4.1.1 Nu
lear Current and Charge OperatorsThe nu
lear 
urrent and 
harge operators are expanded into a sum of one-, two-and, in the 
ase of the 
urrent, three-body terms:j(q) = Xi j(1)i (q) +Xi<j j(2)ij (q) + Xi<j<k j(3)ijk(q) ; (52)�(q) = Xi �(1)i (q) + Xi<j �(2)ij (q) ; (53)where q is the momentum transfer. The one-body operators j(1) and �(1) have thestandard expressions obtained from a non-relativisti
 redu
tion of the 
ovariant
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leon 
urrent, and are given byj(1)i (q) = 12m�i npi; eiq�rio� i2m�i q� �ieiq�ri ; (54)�(1)i (q) = �(1)i;NR(q) + �(1)i;RC(q) ; (55)where f� � � ; � � �g denotes the anti
ommutator, and�(1)i;NR(q) = �i eiq�ri ; (56)�(1)i;RC(q) = 0� 1q1 + q2�=4m2 � 11A �ieiq�ri� i4m2 (2�i � �i)q � (�i � pi)eiq�ri : (57)The following de�nitions have been introdu
ed:�i � 12 hGSE(q2�) +GVE(q2�)�i;zi ; (58)�i � 12 hGSM(q2�) +GVM(q2�)�i;zi ; (59)and p, �, and � are the nu
leon's momentum, Pauli spin and isospin operators,respe
tively. The two terms proportional to 1=m2 in �(1)i;RC are the well knownDarwin-Foldy and spin-orbit relativisti
 
orre
tions [52, 53℄, respe
tively. TheGS=VE=M(q2�) are the ele
tri
/magneti
 (E=M) isos
alar/isove
tor (S=V ) form fa
torsof the nu
leon, taken as fun
tion of the four-momentum transferq2� = q2 � !2 > 0 ; (60)where, for example, the energy transfer ! = qq2 +m2T �mT for elasti
 s
atteringon a target of mass mT initially at rest in the lab. These form fa
tors are relatedto the standard Pauli and Dira
 form fa
tors by:GS=VE (q2�) = F S=V1 (q2�)� q2�4m2F S=V2 (q2�) ; (61)GS=VM (q2�) = F S=V1 (q2�) + F S=V2 (q2�) ; (62)and are normalized as GSE(0) = GVE(0) = 1 ;GSM(0) = 0:880�N ;GVM(0) = 4:706�N ; (63)
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lear magneton (n.m.). The q�-dependen
e is 
onstrained by an-alyzing ele
tron-proton and ele
tron-deuteron s
attering data. While the protonele
tri
 and magneti
 form fa
tors are experimentally fairly well known over a widerange of momentum transfers, there is signi�
ant un
ertainty in the neutron formfa
tors, parti
ularly the ele
tri
 one, whi
h are obtained from model-dependentanalyses of ed data. Until this un
ertainty in the detailed behaviour of the ele
-tromagneti
 form fa
tors of the nu
leon is narrowed, quantitative predi
tions ofele
tro-nu
lear observables at high momentum transfers will remain rather tenta-tive.In the next Subse
tions we des
ribe: (i) the two-body nu
lear 
urrent oper-ators; (ii) the three-body nu
lear 
urrent operators asso
iated with S-wave pionres
attering; (iii) the two-body nu
lear 
harge operators; (iv) the in
lusion of �-isobar 
omponents in the wave fun
tions, and (v) the �-isobar 
urrent operators.4.1.2 The Two-Body Current OperatorsTwo-body ele
tromagneti
 
urrent operators have 
onventionally been derived asthe non-relativisti
 limit of Feynman diagrams, in whi
h the meson-baryon 
ou-plings have been obtained from either e�e
tive 
hiral Lagrangians [54℄ or semi-empiri
al models for the o�-shell pion-nu
leon amplitude [55℄. These methodsof 
onstru
ting e�e
tive 
urrent operators, however, do not address the problemof how to model the 
omposite stru
ture of the hadrons in the phenomenologi-
al meson-baryon verti
es. This stru
ture is often parametrized in terms of formfa
tors. For the ele
tromagneti
 
ase, however, gauge invarian
e a
tually puts
onstraints on these form fa
tors by linking the divergen
e of the two-body 
ur-rents to the 
ommutator of the 
harge operator with the NN intera
tion. Thelatter 
ontains form fa
tors too, but these are determined phenomenologi
ally by�tting NN data. Thus the 
ontinuity equation redu
es the model dependen
e ofthe two-body 
urrents by relating them to the form of the intera
tion. This pointof view has been emphasized by Riska and 
ollaborators [56, 57, 58, 59, 60℄ andothers [61, 62, 63℄, and is adopted in the treatment of two-body 
urrents that we
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uss here. We will refer to it as the so-
alled Riska-pres
ription.The ele
tromagneti
 
urrent operator must satisfy the 
ontinuity equationq � j(q) = [H ; �(q)℄ ; (64)where the HamiltonianH in
ludes two- and three-nu
leon intera
tions and is givenin Eq. (1). To lowest order in 1=m, the 
ontinuity equation (64) separates intoseparate 
ontinuity equations for the one-, two-, and many-body 
urrent operatorsq � j(1)i (q) = " p2i2m ; �(1)i;NR(q)# ; (65)q � j(2)ij (q) = hvij ; �(1)i;NR(q) + �(1)j;NR(q)i ; (66)and a similar equation involving three-nu
leon 
urrents and intera
tions.The one-body 
urrent in Eq. (54) is easily shown to satisfy Eq. (65). Theisospin- and momentum-dependen
e of the two- and three-nu
leon intera
tions,however, lead to non-vanishing 
ommutators with the non-relativisti
 one-body
harge operator, and thus link the longitudinal part of the 
orresponding two-and three-body 
urrents to the form of these intera
tions. At the moment we willlimit our dis
ussion to two-body 
urrents; the investigation of three-body 
urrentoperators is presented in Subse
tions 4.1.3 and 4.1.6.The two-body 
urrent operator has been separated into model-independent(MI) and model-dependent (MD) terms. The former are 
onstru
ted to expli
itlysatisfy 
urrent 
onservation with a given intera
tion model, and are determinedfrom the intera
tion model itself (in the present 
ase, the AV14 or the 
harge-independent part of the AV18 model) following the Riska-pres
ription; the latterare the purely transverse 
urrents asso
iated with the ��
 and !�
 ele
tromag-neti
 
ouplings of Fig. 3, and are therefore un
onstrained by the NN intera
tion.Their expli
it expressions are [1℄j��
(ki;kj) = i f�NNg�NNG��
(q2�)m�m� � i � � j ki � kjh �i � ki(k2i +m2�)(k2j +m2�)f�(ki)f�(kj)
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FIG. 3: Feynman diagram representation of the ��
 and !�
 transition operators.Solid, dashed, thi
k-dashed and wavy lines denote respe
tively nu
leons, pions,ve
tor-mesons and photons. � �j � kj(k2i +m2�)(k2j +m2�)f�(ki)f�(kj)i ; (67)j!�
(ki;kj) = i f�NNg!NNG!�
(q2�)m!m� ki � kjh�i;z �i � ki(k2i +m2�)(k2j +m2!)f�(ki)f!(kj)��j;z �j � kj(k2i +m2!)(k2j +m2�)f!(ki)f�(kj)i ; (68)where ki and kj are the fra
tional momenta delivered to nu
leons i and j with q =ki + kj, m�, m� and m! are the pion, �-meson and !-meson masses, respe
tively,and g�NN and g!NN are the ve
tor �NN and !NN 
ouplings. The q�-dependen
eof the transition form fa
tors G��
(q2�) and G!�
(q2�) is modeled, using ve
tor-dominan
e, as: G��
(q2�) = g��
=(1 + q2�=m2!) ; (69)G!�
(q2�) = g!�
=(1 + q2�=m2�) : (70)The values of G��
(q2�) and G!�
(q2�) at the photon point are known to beG��
(0) = g��
 = 0:56, Ref. [64℄, and G!�
(0) = g!�
 = 0:68, Ref. [55℄, fromthe measured widths of the �! �
 and ! ! �
 de
ays.Finally, f�(k), f�(k) and f!(k) are monopole form fa
tors introdu
ed to takeinto a

ount the 
omposite nature of nu
leons and mesons. They are given by:f�(k) = �2� �m2��2� + k2 ; (71)
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uto� parameters ��, �� and �! in these form fa
torsare not known. We use the values �� = 3:8 fm�1 and �� = �! = 6:3 fm�1obtained from studies of the deuteron ele
tromagneti
 form fa
tors, in parti
ularthe B-stru
ture fun
tion [65℄.The MI two-body 
urrents are obtained using the Riska-pres
ription. In thisapproa
h it is assumed that for a givenNN intera
tion vNN , the isospin-dependent
entral (v� ), spin-spin (v�� ) and tensor (vt� ) 
omponents 
an be attributed toex
hanges of \�-like"pseudos
alar (PS) and \�-like"ve
tor (V) mesons. Workingin momentum-spa
e, we havevNN (k) = [v� (k) + v�� (k)�i � �j + vt� (k)Sij(k)℄� i � � j ; (72)where v� (k), v�� (k) and vt� (k) are related to their 
on�guration-spa
e 
orrespon-dents by the relations:v� (k) = 4� Z 10 r2dr j0(kr)v�(r) ; (73)v�� (k) = 4�k2 Z 10 r2dr [j0(kr)� 1℄ v�� (r) ; (74)vt� (k) = 4�k2 Z 10 r2dr j2(kr)vt� (r) : (75)The fa
tor j0(kr)� 1 in the expression for v�� (k) ensures that its volume integralvanishes. The tensor operator in momentum-spa
e isSij(k) = k2(�i � �j)� 3(�i � k)(�j � k) : (76)At intermediate and long range, the v� , v�� and vt� intera
tions 
an be obtainedby �-meson and �-meson ex
hanges. The �NN and �NN e�e
tive Lagrangiansare: L�NN = �f�NNm�  
5
�� � ��� ; (77)L�NN = g�NN ��
� � ��2m��������� � � (78)where  , � and � are the T = 1=2 nu
leon and the T = 1 pion and �-meson�elds, respe
tively. The Bjorken and Drell 
onventions are used for the 
-matri
es
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 tensor g�� [66℄. f�NN , g�NN and �� are the pseudove
tor �NN ,the ve
tor and tensor �NN 
oupling 
onstants, respe
tively. For example, inthe CD-Bonn OBE model [2℄ the values for these 
ouplings are: f 2�=4� = 0:075,g2�=4� = 0:84, �� = 6:1. By performing a non-relativisti
 redu
tion of the Feynmandiagram of Fig. 4(a), with �- and �-meson ex
hange, one obtains:v�;�NN(k) = �v�S(k)+[v�(k)+2v�(k)℄k2(�i��j)�[v�(k)�v�(k)℄Sij(k)�(� i�� j) ; (79)with v�(k) = �f 2�NN3m2� f 2�(k)k2 +m2� ; (80)v�(k) = �g2�NN(1 + ��)212m2 f 2� (k)k2 +m2� ; (81)v�S = g2�NN f 2� (k)k2 +m2� ; (82)and f�(k) (f�(k)) denotes �NN (�NN) monopole form fa
tors as de�ned inEq. (71). In the CD-Bonn potential the 
uto� parameters are �� = 8:61 fm�1and �� = 6:64 fm�1. By 
omparison of Eqs. (72) and (79), we have:v�(k)! vPS(k) = [v�� (k)� 2 vt� (k)℄=3 ; (83)v�(k)! vV (k) = [v�� (k) + vt� (k)℄=3 ; (84)v�S(k)! vV S(k) = v�(k) : (85)Even though the AV14 and AV18 are not OBE models, the fun
tions vPS(k)and, to a less extent, vV (k) and vV S(k) proje
ted out from their v� , v�� , and vt�
omponents are quite similar to those of �- and �-meson ex
hanges in Eqs. (80){(82) (with 
uto� masses of order 5 fm�1), as shown in Refs. [67, 68℄.The \�-like"(PS) and \�-like"(V) 
urrents are then obtained in two steps: �rst,minimal substitution �� ! ��� iA� in the Lagrangians of Eqs. (77) and (78), andin the free �-meson and �-meson Lagrangians leads to the expressions (for �-likeas an example): L�
NN = �f�NNm�  
5
�A�(� � �)z ; (86)L��
 = �A�(� � ���)z : (87)
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urrents are 
al
ulated performing a non-relativisti
 redu
tion of the Feynman amplitudes of Fig. 4(b).
(a) (b)FIG. 4: (a) OBE Feynman diagram representation; (b) Feynman diagram repre-sentation of the two-body 
urrents asso
iated with meson-ex
hange. Solid, dashedand wavy lines denote respe
tively nu
leons, mesons and photons.The momentum-spa
e expressions for these 
urrents are:j(2)ij (ki;kj; PS) = 3iGVE(q2�)(� i � � j)z�vPS(kj)�i(�j � kj)� vPS(ki)�j(�i � ki)+ki � kjk2i � k2j [vPS(ki)� vPS(kj)℄(�i � ki)(�j � kj)� ; (88)j(2)ij (ki;kj; V) = �3iGVE(q2�)(� i � � j)z �vV (kj)�i � (�j � kj)� vV (ki)�j � (�i � ki)�vV (ki)� vV (kj)k2i � k2j [(ki � kj)(�i � ki) � (�j � kj)+(�i � ki) �j � (ki � kj) + (�j � kj) �i � (ki � kj)℄+13 ki � kjk2i � k2j [vV S(ki)� vV S(kj)℄� ; (89)Con�guration-spa
e expressions are obtained fromj(2)ij (q; a) = Z dx eiq�x Z dki(2�)3 dkj(2�)3 eiki�(ri�x)eikj �(rj�x)j(2)ij (ki;kj; a) ; (90)where a=PS or V. Te
hniques to 
arry out the Fourier transforms above aredis
ussed in Ref. [67℄.We reemphasize: (i) the PS and V two-body 
urrents have no free parametersand, by 
onstru
tion, satisfy the 
ontinuity equation with the given realisti
 in-tera
tion (here the AV14 or the 
harge-independent part of AV18 model); (ii) the
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ontinuity equation requires the same form fa
tor be used to des
ribe the ele
tro-magneti
 stru
ture of the hadrons in the longitudinal part of the 
urrent operatorand in the 
harge operator, while it pla
es no restri
tions on the ele
tromagneti
form fa
tors whi
h may be used in the transverse parts of the 
urrent. Ignoringthis ambiguity, the form fa
tor GVE(q2�) is used in the PS and V 
urrents operators,in line with the \minimal" requirements of 
urrent 
onservation.There are additional two-body 
urrents asso
iated with the momentum de-penden
e of the intera
tion, but their 
onstru
tion is less straightforward. Apro
edure similar to that used to derive the PS and V 
urrents has been gen-eralized to the 
ase of the 
urrents from spin-orbit 
omponents of the intera
-tion [69℄. It 
onsists, in essen
e, of attributing these to ex
hanges of �-like and!-like mesons for the isospin-independent terms, and to �-like mesons for theisospin-dependent ones. The expli
it form of the resulting 
urrents, denoted asSO, 
an be found in Refs. [68, 69℄. The two-body 
urrents from the quadrati
momentum dependen
e of the intera
tion are obtained by minimal substitutionpi ! pi � 12 hGSE(q2�) + GVE(q2�)�i;zi A(ri), A(ri) being the ve
tor potential, intothe 
orresponding 
omponents. In the 
ase of the AV14 and AV18 model, the p2-dependen
e is via L2 and (L ��1 L ��2 + h:
:) terms, and the asso
iated 
urrentsare denoted respe
tively as LL and SO2 [67, 68℄.We note that the SO, LL and SO2 
urrents are fairly short-ranged, and haveboth isos
alar and isove
tor terms. Their 
ontribution to isove
tor observablesis found to be numeri
ally mu
h smaller than that due to the leading PS (�-like) 
urrent. However, these 
urrents give non-negligible 
orre
tions to isos
alarobservables, su
h as the deuteron magneti
 moment and B-stru
ture fun
tion [65℄.Finally it is worth emphasizing that, while the Riska-pres
ription is not unique, ithas nevertheless been shown to provide, at low and moderate values of momentumtransfer, a satisfa
tory des
ription of most observables where the isove
tor two-body 
urrents play a large (if not dominant) role, su
h as the deuteron thresholdele
trodisintegration [65℄, the neutron and proton radiative 
aptures on protonsand deuterons at low energies [65, 68℄, and the magneti
 moments and form fa
torsof the trinu
leons [13℄, as will be shown in Chapter 5.
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hange Current Asso
iated withS-wave Pion Res
atteringIn this Subse
tion we des
ribe the three-body ex
hange 
urrent whi
h 
orrespondsto the main nonresonant two-pion ex
hange three-nu
leon intera
tion. Althoughthis term is not in
luded in the Urbana VIII and IX intera
tions, it should bein
luded in any 
omplete three-nu
leon intera
tion model, as it is implied bye�e
tive Lagrangians for the pion-nu
leon system. Ignoring this in
onsisten
y, inthe present work we study the e�e
ts of the 
urrent operators asso
iated with thisthree-nu
leon intera
tion.The isospin odd \large" 
omponent of the S-wave pion-nu
leon (�N) s
atteringamplitude at low energy and momentum transfer may be des
ribed by the e�e
tiveintera
tion [70℄: L��NN = � 14f 2� 
�� �  � � ��� : (91)Here f� is the pion de
ay 
onstant ('93 MeV). This e�e
tive Lagrangian impliesthe \Weinberg-Tomozawa" relation for the isospin odd 
ombination of the �NS-wave s
attering lengths a1; a3:�2 = 16 �1 + m�m � (a1 � a3) = 116�  m�f� !2 ; (92)whi
h agrees well with the experimental s
attering length values. Combined withthe pseudove
tor �NN e�e
tive Lagrangian of Eq. (77), this e�e
tive Lagrangiangives rise to the three-body intera
tion:VS = � 14m 1f 2�  f�NNm� !2 Xijk 
y
li
 � i � � j � � k�i � ki�k � kkDiDk� (�j � ki � kk + i2 [ki � [Pi �Pj℄� kk � [Pk �Pj℄℄) ; (93)diagrammati
ally shown in Fig. 5. Here we have de�ned Pi � p0i + pi pi and p0ibeing the initial and �nal momentum of nu
leon i, respe
tively. The denominatorfa
tors Di are de�ned as Di = k2i +m2� : (94)
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�
�
�
�

FIG. 5: Feynman diagram representation of the three-nu
leon two-pion ex
hangeintera
tion. Solid and dashed lines denote respe
tively nu
leons and pions. Thedashed 
ir
le 
orresponds to the ��NN vertex.The derivative 
oupling in the Lagrangian of Eq. (91) leads to an ele
tromag-neti
 
onta
t term, that 
an be 
onstru
ted by minimal substitution, and has theexpression L��
NN = � 14f 2� 
�A�[�z(� � �)� �z�2℄ : (95)Together with the e�e
tive Lagrangians of Eqs. (86) and (87), this pro
eduregives rise to the following set of three-nu
leon ex
hange 
urrent operators shownin Fig. 6: (a) a 
onta
t 
urrent at the S-wave res
attering vertex, (b) two 
onta
t
urrents at the two a

ompanying pseudove
tor �NN verti
es and (
) two pion
urrent terms.The expli
it expressions for these are 
orrespondingly:jaijk(q) = i8m 1f 2�  f�NNm� !2 [� k � (� j � � i) + � i � (� j � � k)℄z(�i � ki)(�k � kk)DiDk [�j � (q� ki � kk)� iPj℄ ; (96)jbijk(q) = i4m 1f 2�  f�NNm� !2 [� i � (� j � � k)℄z�i(�k � kk)DkDi0([�j � (ki � q)� kk℄ + i2 [ki � [Pi �Pj℄�kk � [Pk �Pj℄� 2m! + q �Pj℄)+ (i *) k) ; (97)
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(b)

(a)

(c)FIG. 6: Feynman diagram representation of the three-nu
leon ex
hange 
urrentoperators. Solid, dashed and wavy lines denote respe
tively nu
leons, pions andphotons. The dashed 
ir
le 
orresponds to the ��NN vertex.
j
ijk(q) = � i4m 1f2�  f�NNm� !2 [� i � (� j � � k)℄z (�i � ki)(�k � kk)DiDk 2ki � qDi0([�j � (ki � q)� kk℄ + i2 [ki � [Pi �Pj℄� kk � [Pk �Pj℄� 2m! + q �Pj℄)+ (i *) k) : (98)In these ex
hange 
urrent operators, the fra
tions of the total momentum transferq imparted to the three nu
leons are denoted ki respe
tively, so that q = k1+k2+k3. The denominator fa
tors Di are de�ned in Eq. (94), while the denominatorfa
tors Di0 are de�ned as Di0 = (q� ki)2 +m2� : (99)The 
ombined three-nu
leon ex
hange 
urrent operator ja + jb + j
 satis�esthe 
ontinuity equation with the three-nu
leon intera
tion VS of Eq. (93), Thesetwo-pion ex
hange three-nu
leon 
urrents will be labelled as ��S in Chapter 5.
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urrents are linked to the form of NN intera
tion via the
ontinuity equation, the most important two-body 
harge operators are model de-pendent and may be viewed as relativisti
 
orre
tions. They fall into two 
lasses:the �rst 
lass in
ludes those e�e
tive operators that represent non-nu
leoni
 de-grees of freedom, su
h as nu
leon-antinu
leon pairs or nu
leon-resonan
es, andwhi
h arise when these degrees of freedom are eliminated from the state ve
tor;to the se
ond 
lass belong those dynami
al ex
hange 
harge e�e
ts that wouldappear even in a des
ription expli
itly in
luding non-nu
leoni
 ex
itations in thestate ve
tor, su
h as the ��
 and !�
 transition 
ouplings. The proper formsof the former operators depend on the method of eliminating the non-nu
leoni
degrees of freedom [65, 71, 72℄. There are nevertheless rather 
lear indi
ations forthe relevan
e of two-body 
harge operators from the failure of 
al
ulations basedon the one-body operator in Eq. (55) in predi
ting the 
harge form fa
tors of thethree- and four-nu
leon systems [13, 73℄, and the deuteron A-stru
ture fun
tionand tensor polarization observable [65℄.The two-body model used in the present work 
onsists of the �-, �- and !-meson ex
hange 
harge operators, as well as of the ��
 and !�
 
harge tran-sition 
ouplings. The former are derived by 
onsidering the low-energy limit ofthe relativisti
 Born diagrams asso
iated with the virtual meson photoprodu
tionamplitude. The ��
 and !�
 operators are the leading 
orre
tions obtained in anon-relativisti
 redu
tion of the 
orresponding Feynman diagrams of Fig. 3. Toredu
e their model dependen
e, the �- and �-meson-ex
hange 
harge operators,the former of whi
h gives by far the dominant 
ontribution, are 
onstru
ted usingthe PS (�-like) and V (�-like) 
omponents proje
ted out of the isospin-dependentspin-spin and tensor terms of the intera
tion [73℄. The resulting two-body op-erators are denoted as PS and V, and are here obtained from either the AV14or the 
harge-independent part of the AV18. The momentum-spa
e expressionsof the PS, V, !, ��
 and !�
 
harge operators, �(2)ij (ki;kj; PS), �(2)ij (ki;kj; V),
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(ki;kj) and �!�
(ki;kj) respe
tively, are:�(2)ij (ki;kj; PS) = � 32m" hF S1 (q2�)� i � � j + F V1 (q2�)�j;zi vPS(kj)�i � q�j � kj+ hF S1 (q2�)� i � � j + F V1 (q2�)�i;zi vPS(ki)�i � ki �j � q# ; (100)�(2)ij (ki;kj; V) = � 32m" hF S1 (q2�)� i � � j + F V1 (q2�)�j;zi� vV (kj)(�i � q) � (�j � kj)+ hF S1 (q2�)� i � � j + F V1 (q2�)�i;zi� vV (ki)(�j � q) � (�i � ki)# ; (101)�(2)ij (ki;kj;!) = g2!NN8m3 " hF S1 (q2�)(� i � � j) + F V1 (q2�)�i;zi� (�i � q) � (�j � kj)k2j +m2! f!(kj)+ hF S1 (q2�)(� i � � j) + F V1 (q2�)�j;zi� (�j � q) � (�i � ki)k2i +m2! f!(ki)# ; (102)���
(ki;kj) = �f�NNg�NN(1 + ��)2m�m�m G��
(q2�) � i � � j"�i � ki(�j � kj) � (ki � kj)(k2i +m2�)(k2j +m2�) f�(ki) f�(kj)��j � kj(�i � ki) � (ki � kj)(k2i +m2�)(k2j +m2�) f�(ki) f�(kj)# ; (103)�!�
(ki;kj) = �f�NNg!NN2m�m!m G!�
(q2�)"�i;z�i � ki(�j � kj) � (ki � kj)(k2i +m2�)(k2j +m2!) f�(ki) f!(kj)��j;z�j � kj(�i � ki) � (ki � kj)(k2i +m2!)(k2j +m2�) f!(ki) f�(kj)# ; (104)
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 and Pauli form fa
tors, m is the nu
leonmass and vPS and vV are given in Eqs. (83) and (84). Coupling 
onstants and
uto� parameters are dis
ussed in Subse
tion 4.1.2.We note �nally that in the pion (as well as ve
tor meson) 
harge operators thereare additional 
ontributions due to the energy dependen
e of the pion propagatorand dire
t 
oupling of the photon to the ex
hanged pion (�-meson). However,these operators give rise to non-lo
al isove
tor 
ontributions whi
h are expe
tedto provide only small 
orre
tions to the leading lo
al terms. For example theseoperators would only 
ontribute to the isove
tor 
ombination of the 3He and 3H
harge form fa
tors, whi
h is anyway a fa
tor of three smaller than the isos
alar.Thus they are negle
ted in the present model.4.1.5 �-Isobar Components in the Wave Fun
tions: theTCO MethodWhen �-isobar degrees of freedom are 
onsidered, the nu
lear wave fun
tion iswritten as	N+� = 	(NNN � � �) + 	(1)(NN� � � �) + 	(2)(N�� � � �) + � � � ; (105)where 	 is that part of the total wave fun
tion 
onsisting only of nu
leons, theterm 	(1) is the 
omponent in whi
h a single nu
leon has been 
onverted into a�-isobar, and so on. The nu
lear two-body intera
tion is taken asvij = vij(NN ! NN) + [vij(NN ! N�) + vij(NN ! ��) + H:
:℄ ; (106)where vij(NN ! NN) is the nu
lear intera
tion studied in Chapter 2, and thetransition intera
tions vij(NN ! N�) and vij(NN ! ��) are responsible forgenerating �-isobar admixtures in the wave fun
tion. The long-range part of vijis due to pion-ex
hange. In an e�e
tive Lagrangian approa
h, the �N� vertexintera
tion is written as:L�N� = f�N�m�  �T � ��� +H:
: ; (107)



CHAPTER 4. THE NUCLEAR TRANSITION OPERATORS 41where  � is the isospin-spin 3/2 �eld of the �, T is the isospin-transition operatorwhi
h 
onvert the nu
leon into a � isobar, and f�N� is the �N� 
oupling 
onstant.The non-relativisti
 redu
tion of the Feynman amplitudes in Fig. 7 leads toNN !N� and NN ! �� intera
tions vij(NN ! N�) and vij(NN ! ��) of theform: vij(NN ! N�) = hv��II(rij)�i � Sj + vt�II(rij)SIIij i � i �Tj ; (108)vij(��! ��) = hv��III(rij)Si � Sj + vt�III(rij)SIIIij i Ti �Tj : (109)Here, Si is the spin-transition operator, and SIIij and SIIIij are tensor operators inwhi
h, respe
tively, the Pauli spin operators of either parti
le i or j, and bothparti
les i and j are repla
ed by 
orresponding spin-transition operators. Thefun
tions v��II(r), et
., are given by:v���(r) = (ff)�4� m�3 e�xx C(x) ; (110)vt��(r) = (ff)�4� m�3 �1 + 3x + 3x2� e�xx C2(x) ; (111)where � = II, III, x � m�r, (ff)� = f�NNf�N�, f�N�f�N�, for � = II, III,respe
tively, and the 
uto� fun
tion C(x) = 1� e��x2 . In the Argonne v28Q [77℄(AV28Q) intera
tion, whi
h 
ontains expli
itN and � degrees of freedom, f�N� =(6p2=5)f�NN , as obtained in the quark model, and � = 4.09.
(a) (b)FIG. 7: Feynman diagram representation of the NN ! N� and NN ! ��transition intera
tions due to one pion ex
hange. Solid, thi
k-solid, and dashedlines denote nu
leons, �-isobars, and pions, respe
tively.The short- and intermediate-range parts of vij, in
uen
ed by more 
omplexdynami
s, are 
onstrained by �tting NN s
attering data at lab energy � 400 MeVand deuteron properties [26℄, as earlier dis
ussed in Chapter 2.
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e the NN , N� and �� intera
tions have been determined, the problem isredu
ed to solving the N -� 
oupled-
hannel S
hr�odinger equation. In prin
iple,at least for the A=3 systems, Faddeev and hyperspheri
al-harmoni
s te
hniques
an be used (and, indeed, Faddeev methods have been used in the past [74, 75℄) tothis end, although the large number of N -� 
hannels involved makes the pra
ti
alimplementation of these methods diÆ
ult. A somewhat simpler approa
h 
onsistsof a generalization of the 
orrelation operator te
hnique [76℄, whi
h has provenvery useful in the variational theory of light nu
lei, parti
ularly in the 
ontext ofvariational Monte Carlo 
al
ulations [4, 27℄. In the transition 
orrelation operator(TCO) approa
h, as this method is known [25℄, the nu
lear wave fun
tion iswritten as 	N+� = 24SYi<j �1 + UTRij �35 	 ; (112)where 	 is the purely nu
leoni
 
omponent, S is the symmetrizer, and the tran-sition operators UTRij 
onvert NN pairs into N� and �� pairs. The latter arede�ned as UTRij = UN�ij + U�Nij + U��ij ; (113)with UN�ij and U��ij given in Eqs. (108)-(109), where the fun
tions v��� and vt��are repla
ed by transition 
orrelation fun
tions u��� and ut��, respe
tively, yet tobe determined. In the present study the 	 is taken from CHH solutions of theAV14/UVIII or AV18/UIX Hamiltonians with nu
leons only intera
tions, whilethe transition 
orrelation fun
tions u��� et
. are obtained solving the two-bodybound and low-energy s
attering-state problem with the AV28Q intera
tion. The
orrelation fun
tions u��II(r), et
. are shown in Fig. 8.The validity of the approximation inherent to Eq. (112) was dis
ussed at lengthin the original work [25℄, and has been reviewed more re
ently in Ref. [13℄. Here weonly note that: (i) sin
e the 
orrelation fun
tions u��II(r), et
. are short-ranged(see Fig. 8), they are expe
ted to have a rather weak dependen
e on A; this shouldallow us to use 
orrelation fun
tions obtained solving a two-body problem also forpro
esses involving three and four nu
leons. (ii) The AV28Q intera
tion providedan ex
ellent des
ription of the NN database available in the early eighties, but
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FIG. 8: Transition 
orrelation fun
tions u��II(r), ut�II(r), et
. obtained for theAV28Q model [77℄, and perturbation theory equivalents u��II;PT(r), ut�II;PT(r),et
.no attempt has been made to re�t this model to the more re
ent and mu
h moreextensive Nijmegen database [78℄.We �nally note that the normalization of the full wave fun
tion 	N+� in theTCO approa
h 
an be written:h	N+� j	N+�i = h	 j 1 + Xi<j[ 2U�Nij yU�Nij + U��ij yU��ij ℄+ Xi<j ; k 6=i;j[U�Nij yU�Nik + UN�ij yUN�kj ℄ j	i+ : : : ; (114)where we have retained two- and three-body 
ontributions. The wave fun
tionnormalization ratios h	N+� j	N+�i=h	 j	i, obtained for the bound three- andfour-nu
leon systems, are listed in Table V. Thus, the probability P� of �-
omponents in the nu
lear wave fun
tion is about 2 % and 6 % in three- and four-body nu
lei, respe
tively. As a 
omparison, P� = 0:5 % in the deuteron [26, 77℄.
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tion normalization ratios h	N+� j	N+�i=h	 j	i ob-tained for the bound three- and four-nu
leon systems, when the TCO 
al
ulationis based on the AV28Q intera
tion. The purely nu
leoni
 CHH wave fun
tionsj	i 
orrespond to the AV18/UIX Hamiltonian model.Model 3H 3He 4HeAV28Q 1.0238 1.0234 1.0650
The more traditional way of estimating the importan
e of the �-isobar degreesof freedom in ele
troweak observables, is the so-
alled �rst-order perturbationtheory (PT). In su
h an approa
h, the �-isobar admixtures in the wave fun
tionsare generated via	(1) = 1m�m� Xi<j [vij(NN ! N�) + vij(NN ! �N)℄ 	 ; (115)	(2) = 12(m�m�)Xi<j vij(NN ! ��)	 ; (116)where the �-isobar kineti
 energy 
ontributions in the denominators of Eqs. (115)and (116) have been negle
ted (stati
 � approximation).When 
ompared to the TCO approa
h, the PT approximation produ
es N�and �� admixtures that are too large at short distan
es, and therefore leads to asubstantial overpredi
tion of the e�e
ts asso
iated with � isobars in ele
troweakobservables [25℄, as 
an be seen in Fig. 8.4.1.6 Ele
tromagneti
 �-CurrentsIn a full des
ription in whi
h also �-isobar degrees of freedom are in
luded, theone-body 
urrent is written asj(1)i (q) = XB;B0=N;� ji(q;B ! B0) ; (117)where ji(q;N ! N) is the nu
leoni
 
urrent 
omponent given in Eq. (54) andji(q;N ! �) = � i2mG
N�(q2�)eiq�riq� SiTi;z ; (118)
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��(q2�)eiq�riq��i(1 + �i;z) : (119)Here � (�) is the Pauli operator for the � spin 3/2 (isospin 3/2), and the ex-pression for ji(q; �! N) is obtained from that for ji(q;N ! �) by repla
ing thetransition spin and isospin operators by their Hermitian 
onjugates. The N�-transition and � ele
tromagneti
 form fa
tors, respe
tively G
N� and G
��, areparametrized asG
N�(q2�) = �
N��1 + q2�=�2N�;1�2q1 + q2�=�2N�;2 ; (120)G
��(q2�) = �
���1 + q2�=�2���2 : (121)The N�-transition magneti
 moment �
N� is taken equal to 3 n.m., as obtainedfrom an analysis of 
N data in the �-resonan
e region [79℄; this analysis also gives�N�;1 = 0.84 GeV and �N�;2 = 1.2 GeV. The value used for the � magneti
moment �
�� is 4.35 n.m. by averaging results of a soft-photon analysis of pion-proton bremsstrahlung data near the �++ resonan
e [80℄, and ��� = 0.84 GeVas in the dipole parametrization of the nu
leon form fa
tor. In prin
iple, N to �ex
itation 
an also o

ur via an ele
tri
 quadrupole transition. Its 
ontribution,however, has been ignored, sin
e the asso
iated pion photoprodu
tion amplitudeis found to be experimentally small at resonan
e [81℄. Also negle
ted is the �
onve
tion 
urrent.The N�-transition two-body 
urrents are written asj(2)ij (q) = X0Bi;Bj=N;�X0B0i ;B0j=N;� jij(q;BiBj ! B0iB0j) ; (122)where the prime over the summation symbols indi
ates that terms involving morethan a single � have been negle
ted in the present study. The NN ! NN two-body terms have already been dis
ussed. The two-body terms involving at mosta single � are expli
itly given byjij(q;NN ! N�) = (� i �Tj)z" h�i(Sj � r̂ij)eiq�ri + (�i � r̂ij)Sjeiq�rji h(rij)+ eiq�Rij(�i � ri)(Sj � rj)r̂ijh(rij)# ; (123)
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tions h(r) and h(r) are de�ned,respe
tively, as h(r) � � f�NNf�N�4� ! 1x2 (1 + x)e�x ; (124)�h(r) �  f�NNf�N�4� ! 1m2� Z + 12� 12 dz e�izq�re�rL(z) ; (125)with x = m�r and L(z) = [m2� + q2(1=4 � z2)℄1=2. Terms expli
itly proportionalto q in Eq. (123) have been dropped, sin
e in appli
ations only the transverse
omponents of j(q) o

ur. The three terms in Eq. (123) are asso
iated withdiagrams (a), (b) and (
) in Fig. 9, respe
tively, and 
an be obtained from thewell known expression of the two-body nu
leoni
 
urrents due to pion-ex
hangeby repla
ing �j and � j with Sj and Tj, respe
tively.
(a) (b) (c)FIG. 9: N�-transition two-body 
urrents due to pion ex
hange.To a

ount for the hadron 
ompositeness, form fa
tors must be introdu
ed atthe �NN and �N� verti
es. In the 
ase of vij(NN ! N�) intera
tion, an r-spa
e Gaussian 
uto� has been used. However, for the j(NN ! N�) above it hasbeen found 
onvenient to introdu
e monopole form fa
tors given in Eq. (71) with� = � and ��=4.56 fm�1. This value for �� is 
onsistent with that obtained fromthe tensor 
omponent of vij(NN ! N�). Finally, the expression in Eq. (123) ismultiplied by the isove
tor form fa
tor GVE(q2�).4.2 The Weak Transition OperatorsWe des
ribe here the model for the weak 
urrent and 
harge operators. As for theele
tromagneti
 
ase, in the �rst part we dis
uss the model when only nu
leoni
degrees of freedom are in
luded. In the se
ond part we des
ribe the �-isobar
ontributions.
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lear Weak Current and Charge OperatorsThe nu
lear weak 
urrent and 
harge operators have polar-ve
tor/s
alar (V) andaxial-ve
tor/pseudos
alar (A) 
omponentsj�(q) = j�(q; V) + j�(q; A) ; (126)��(q) = ��(q; V) + ��(q; A) ; (127)where q is the momentum transfer, and the subs
ripts � denote 
harge raising(+) or lowering ({) isospin indi
es. Ea
h 
omponent, in turn, 
onsists of one-,two-, and many-body terms that operate on the nu
leon degrees of freedom:j(q; a) = Xi j(1)i (q; a) +Xi<j j(2)ij (q; a) + : : : ; (128)�(q; a) = Xi �(1)i (q; a) +Xi<j �(2)ij (q; a) + : : : ; (129)where a=V, A and the isospin indi
es have been suppressed to simplify the nota-tion. The one-body operators j(1)i and �(1)i have the standard expressions obtainedfrom a non-relativisti
 redu
tion of the 
ovariant single-nu
leon V and A 
urrents,and are listed below for 
onvenien
e. The V-
harge operator is written as�(1)i (q; V) = �(1)i;NR(q; V) + �(1)i;RC(q; V) ; (130)with �(1)i;NR(q; V) = �i;� eiq�ri ; (131)�(1)i;RC(q; V) = �i (2�v � 1)4m2 �i;� q � (�i � pi) eiq�ri : (132)The V-
urrent operator is expressed asj(1)i (q; V) = 12m�i;� fpi ; eiq�rig � i �v2m�i;� q� �i eiq�ri ; (133)where �v is the isove
tor nu
leon magneti
 moment (�v = 4:709 n.m.). Finally,the isospin raising and lowering operators are de�ned as�i;� � (�i;x � i �i;y)=2 : (134)
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orre
tion. The ve
tor 
harge and 
urrent operators above are simplyobtained from the 
orresponding isove
tor ele
tromagneti
 operators of Eqs. (54)-(59), by the repla
ement �i;z=2 ! �i;�, in a

ordan
e with the 
onserved-ve
tor-
urrent (CVC) hypothesis. The q�-dependen
e of the nu
leon's ve
tor form fa
tors(and, in fa
t, axial-ve
tor form fa
tors below) has been ignored, sin
e in this workwe are interested in weak pro
esses involving very small momentum transfers.For this same reason, the Darwin-Foldy relativisti
 
orre
tion proportional toq2=(8m2) in �(1)i;RC(q; V) has also been negle
ted.The A-
harge operator is given, to leading order, by�(1)i (q; A) = � gA2m �i;��i � fpi ; eiq�rig ; (135)while the A-
urrent operator 
onsidered in the present work in
ludes leading andnext-to-leading order 
orre
tions in an expansion in powers of p=m, i.e.j(1)i (q; A) = j(1)i;NR(q; A) + j(1)i;RC(q; A) ; (136)with j(1)i;NR(q; A) = �gA �i;� �i eiq�ri ; (137)j(1)i;RC(q; A) = gA4m2 �i;�  �ifp2i ; eiq�rig � f�i � pi pi ; eiq�rig� 12�i � q fpi ; eiq�rig � 12q f�i � pi ; eiq�rig+ i q� pi eiq�ri!� gP2mm� �i;�q�i � q eiq�ri : (138)The axial 
oupling 
onstant gA is taken to be [82℄ 1.2654�0.0042, by averagingvalues obtained, respe
tively, from the beta asymmetry in the de
ay of polarizedneutrons (1.2626�0.0033 [83, 84℄) and the half-lives of the neutron and superal-lowed 0+ ! 0+ transitions, i.e. [2ft(0+ ! 0+)=ft(n) � 1℄=1.2681�0.0033 [82℄.The last term in Eq. (138) is the indu
ed pseudos
alar 
ontribution (m� is the
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h the 
oupling 
onstant gP is taken as [85℄ gP={6.78 gA.Note that in the limit q=0, the expressions for �(1)i;NR(q; V) and j(1)i;NR(q; A) redu
eto the familiar Fermi and Gamow-Teller operators.In the next �ve Subse
tions we des
ribe: (i) the two-body V-
urrent and V-
harge operators, required by the CVC hypothesis; (ii) the two-body A-
urrentand A-
harge operators due to �- and �-meson ex
hanges, and the �� me
hanism;(iii) the V and A 
urrent and 
harge operators asso
iated with ex
itation of �-isobar resonan
es [14℄.4.2.2 Two-Body Weak Ve
tor Current and Charge Oper-atorsThe weak ve
tor (V) 
urrent and 
harge operators are derived from the 
orre-sponding ele
tromagneti
 operators by making use of the CVC hypothesis, whi
hfor two-body terms implies�12(�i;a + �j;a) ; j(2)ij;z(q; 
)� = i �azb j(2)ij;b(q; V) ; (139)where j(2)ij;z(q; 
) are the isove
tor (
harge-
onserving) two-body ele
tromagneti

urrents, and a; b = x; y; z are isospin Cartesian 
omponents. A similar relationholds between the ele
tromagneti
 
harge operators and its weak ve
tor 
ounter-parts. The 
harge-raising or lowering weak ve
tor 
urrent (or 
harge) operatorsare then simply obtained from the linear 
ombinationsj(2)ij;�(q; V) = j(2)ij;x(q; V)� i j(2)ij;y(q; V) : (140)Using Eq. (139), it is easy to see that the two-body ve
tor 
urrent and 
hargeoperators are simply obtained from the 
orresponding isove
tor ele
tromagneti
terms by making the substitutions �i;z ! �i;� and (� i � � j)z ! (� i � � j)� inEqs. (67)-(68), (88)-(89) and (100)-(101). Here we have de�ned(� i � � j)� � (� i � � j)x � i(� i � � j)y : (141)
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tromagneti
 
urrent operator in
ludes PS(\�-like"), V (\�-like"), SO, LL and SO2 
urrents, as already dis
ussed in Se
-tion 4.1.2, we in
luded in the weak ve
tor 
urrent operator only the PS and V
omponents, whi
h are expe
ted to give the leading 
ontributions, as already ver-i�ed in the ele
tromagneti
 
ase.Among the MD terms of the weak ve
tor 
urrent operator, the !�
 
ontribu-tion has been found negligible, while the �-
urrents have been found to give thelargest MD 
ontribution, whi
h, however, is still small respe
t to that due to theleading MI terms. For the �-
ontributions, see Subse
tion 4.2.5.Finally, the weak ve
tor 
harge operator 
onsists only of the \�-like"and \�-like"terms, already dis
ussed in Se
tion. 4.1.4, whi
h were found to give the largesttwo-body 
ontributions.4.2.3 Two-Body Weak Axial Current OperatorsIn 
ontrast to the ele
tromagneti
 
ase, the axial 
urrent operator is not 
on-served. Its two-body 
omponents 
annot be linked to the NN intera
tion and,in this sense, should be viewed as model dependent. Among the two-body axial
urrent operators, the leading term is that asso
iated with ex
itation of �-isobarresonan
es. We defer its dis
ussion to Se
tion 4.2.5. In the present Se
tion wepresent the two-body axial 
urrent operators due to �- and �-meson ex
hanges(the �A and �A 
urrents, respe
tively), and the ��-transition me
hanism (the��A 
urrent). Their individual 
ontributions have been found numeri
ally far lessimportant than those from �-ex
itation 
urrents in studies of weak transitionsinvolving light nu
lei [12, 14, 51℄. These studies [12, 14, 51℄ have also found thatthe �A and �A 
urrent 
ontributions interfere destru
tively, making their 
om-bined 
ontribution almost entirely negligible. These 
on
lusions are 
on�rmed inthe present work.The �A, �A, and ��A 
urrent operators were �rst des
ribed in a systemati
way by Chemtob and Rho [55℄. Their derivation has been given in a numberof arti
les, in
luding the original referen
e mentioned above and the more re
ent



CHAPTER 4. THE NUCLEAR TRANSITION OPERATORS 51review by Towner [86℄. Their momentum-spa
e expressions are :j(2)ij (ki;kj; �A) = � gA2m (� i � � j)� v�(kj)�i � kj �j � kj+ gAm �j;� v�(kj) (q + i�i �Pi) �j � kj + (i *) j) ; (142)j(2)ij (ki;kj; �A) = gA2m(� i � � j)� v�(kj) hq �i � (�j � kj) + i(�j � kj)�Pi�[�i � (�j � kj)℄� kji+ gAm�j;� v�(kj) h(�j � kj)� kj � i[�i � (�j � kj)℄�Pii+ (i *) j) ; (143)j(2)ij (ki;kj; ��A) = �gAm g2� (� i � � j)� f�(ki)k2i +m2� f�(kj)k2j +m2� �j � kj�h(1 + ��)�i � ki � iPii+ (i *) j) ; (144)where the fun
tions v�(k) and v�(k) have already been de�ned in Eqs. (80){(81),and the monopole form fa
tors are given in Eq. (71).Note that the values used for the �NN and �NN 
oupling 
onstants and 
uto�masses are the following: f 2�=4� = 0:075, g2�=4� = 0:5, �� = 6:6, �� = 4:8 fm�1,and �� = 6:8 fm�1. The �-meson 
oupling 
onstants are taken from the olderBonn OBE model [87℄, rather than from the more re
ent CD-Bonn intera
tion [2℄(g2�=4� = 0:81 and �� = 6:1). This un
ertainty has in fa
t essentially no impa
t onthe results reported in the present work for two reasons. Firstly, the 
ontributionfrom �A 
urrents, as already mentioned above, is very small. Se
ondly, the 
om-plete two-body axial 
urrent model, in
luding the 
urrents due to �-ex
itationdis
ussed below, is 
onstrained to reprodu
e the Gamow-Teller matrix elementin tritium �-de
ay by appropriately tuning the value of the N�-transition axial
oupling g�A. Hen
e 
hanges in g� and �� only require a slight readjustament ofthe g�A value.4.2.4 Two-Body Weak Axial Charge OperatorsThe model for the two-body weak axial 
harge operators adopted here in
ludesa term of pion-range as well as short-range terms asso
iated with s
alar- and
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tor-meson ex
hanges [88℄. The experimental eviden
e for the presen
e of thesetwo-body axial 
harge me
hanisms rests on studies of 0+ *) 0� weak transitions,su
h as the pro
esses 16N(0�,120 keV)!16O(0+) and 16O(0+)+��!16N(0�,120keV)+��, and �rst-forbidden �-de
ays in the lead region [89℄. Shell-model 
al-
ulations of these transitions suggest that the e�e
tive axial 
harge 
oupling ofa bound nu
leon may be enhan
ed by roughly a fa
tor of two over its free nu-
leon value. There are rather strong indi
ations that su
h an enhan
ement 
anbe explained by two-body axial 
harge 
ontributions [88℄.The pion-range operator is taken as�(2)ij (ki;kj; �A) = �i gA4 f2� (� i � � j)� f 2�(ki)k2i +m2� �i � ki + (i *) j) ; (145)where f� is the pion de
ay 
onstant (f� '93 MeV), ki is the momentum transferto nu
leon i, and f�(k) is the monopole form fa
tor given by Eq. (71) with ��=4.8fm�1. The stru
ture and overall strength of this operator are determined by softpion theorem and 
urrent algebra arguments [90, 91℄, and should therefore beviewed as \model independent". It 
an also be derived, however, by 
onsideringnu
leon-antinu
leon pair 
ontributions with pseudos
alar �N 
oupling.The short-range axial 
harge operators 
an be obtained in a \model-independent"way, 
onsistently with the NN intera
tion model. The pro
edureis des
ribed in Ref. [88℄, and is similar to the Riska-pres
ription used to derivethe \model-independent"ele
tromagneti
 
urrents. Here we 
onsider the 
hargeoperators asso
iated only with the 
entral and spin-orbit 
omponents of the inter-a
tion, sin
e they are expe
ted to give the largest 
ontributions, after the �(2)(�A)operator above. This expe
tation is in fa
t 
on�rmed in the present study. Themomentum-spa
e expressions are given by�(2)ij (ki;kj; sA) = gA2m2 [�i;� v s(kj) + �j;� v s� (kj)℄�i �Pi + (i *) j) ; (146)�(2)ij (ki;kj; vA) = gA2m2 [�i;� v v(kj) + �j;� v v� (kj)℄ [�i �Pj + i (�i � �j) � kj℄� i gA4m2 (� i � � j)� v v� (kj)�i � ki + (i *) j) ; (147)



CHAPTER 4. THE NUCLEAR TRANSITION OPERATORS 53where Pi = pi + p0i, andv �(k) = 4� Z 10 dr r2 j0(kr) v �(r) ; (148)with �=s, s� , v, and v� . The following de�nitions have been introdu
edv s(r) = 34v
(r) + m22 Z 1r dr0 r0 �vb(r0)� 12vbb(r0)�v v(r) = 14v
(r)� m22 Z 1r dr0 r0 �vb(r0)� 12vbb(r0)� ; (149)where v
(r), vb(r) and vbb(r) are the isospin-independent 
entral, spin-orbit, and(L�S)2 
omponents of the AV14 or AV18 intera
tions, respe
tively. The de�nitionsfor v s� (r) and v v� (r) 
an be obtained from those above, by repla
ing the isospin-independent v
(r), vb(r) and vbb(r) with the isospin-dependent v
� (r), vb� (r) andvbb� (r).4.2.5 Weak �-ContributionsIn this Subse
tion we review the weak 
urrent and 
harge operators asso
iatedwith ex
itation of � isobars. A dis
ussion of the TCO method used to in
ludeexpli
itly �-isobar degrees of freedom in the wave fun
tions has been given inSubse
tion 4.1.5.The axial 
urrent and 
harge operators asso
iated with ex
itation of � isobarsare modeled as j(1)i (q;N ! �;A) = �g�A Ti;� Si eiq�ri ; (150)j(1)i (q; �! �;A) = �gA�i;��i eiq�ri ; (151)and �(1)i (q;N ! �;A) = � g�Am� Ti;� Si � pi eiq�ri (152)�(1)i (q; �! �;A) = � gA2m� �i;��i � fpi ; eiq�rig ; (153)where m� is the �-isobar mass, � (�) is the Pauli operator for the � spin3/2 (isospin 3/2), and Ti;� and �i;� are de�ned in analogy to Eq. (134). The



CHAPTER 4. THE NUCLEAR TRANSITION OPERATORS 54expression for j(1)i (q; � ! N;A) (�(1)i (q; � ! N;A)) is obtained from that forj(1)i (q;N ! �;A) (�(1)i (q;N ! �;A)) by Hermitian 
onjugation and repla
ing qwith �q.The 
oupling 
onstants g�A and gA are not well known. In the quark-model,they are related to the axial 
oupling 
onstant of the nu
leon by the relations g�A =(6p2=5)gA and gA = (1=5)gA. These values have often been used in the literaturein the 
al
ulation of �-indu
ed axial 
urrent 
ontributions to weak transitions.However, given the un
ertainties inherent to quark-model predi
tions, a morereliable estimate for g�A is obtained by determining its value phenomenologi
allyto reprodu
e the measured Gamow-Teller matrix element in tritium �-de
ay [12℄.This pro
edure is dis
ussed in Chapter 7.The N ! � and �! � weak ve
tor 
urrents are modeled, 
onsistently withthe CVC hypothesis, asj(1)i (q;N ! �;V) = �i ��m Ti;� q� Si eiq�ri ; (154)j(1)i (q; �! �;V) = �i �12m �i;� q��i eiq�ri ; (155)where �� � �
N� = 3 n.m. and � � �
�� = 4:35 n.m., as given in Se
tion 4.1.6.



Chapter 5Trinu
leon Form Fa
torsIn the previous Chapters, we have des
ribed models for the nu
lear Hamiltonian,pra
ti
al 
omputational methods for the a

urate numeri
al 
al
ulation of wavefun
tions, and models for the ele
troweak 
urrent and 
harge operators. A thor-ough testing of these models 
an be performed studying observables for whi
hexperimental results are available. Ele
tron-s
attering, in parti
ular, provides anex
ellent tool for probing the ele
tromagneti
 stru
ture of nu
lei over a wide rangeof momentum transfer.In this Chapter, we present results for the trinu
leon elasti
 form fa
tors,magneti
 moments and magneti
 and 
harge radii. These observables are de�nedin Se
tion 5.1, while the Monte Carlo te
hnique used to 
al
ulate them is reviewedin Se
tion 5.2. Finally, in Se
tion 5.3 we dis
uss our results, 
omparing them withthe available experimental data.5.1 Ele
tron-S
attering from Nu
leiIn the one-photon-ex
hange approximation the ele
tron-s
attering 
ross se
tioninvolving a transition from an initial nu
lear state jJii of spin Ji and rest massmi to a �nal nu
lear state jJfi of spin Jf , rest mass mf and re
oiling energy Ef
55
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an be expressed in the laboratory frame as [1, 52, 92, 93℄d�d
 = 4��M f�1re
 �vLF 2L(q) + vTF 2T (q)� ; (156)where �M =  � 
os�=22�i sin2�=2!2 ; (157)vL = �q2�q2�2 ; (158)vT = tan2 �2 + q2�2 q2 ; (159)and the re
oil fa
tor fre
 is given byfre
 = 1 + �f � �i 
os �Ef ' 1 + 2�imi sin2 �2 : (160)The ele
tron kinemati
al variables are de�ned in Fig. 10, � is the angle betweenki and kj, and q2� is de�ned in Eq. (60). The last expression for fre
 in Eq. (160)
εf,kf

εi,ki

Ef,pf

Ei,pi

ω,q

FIG. 10: Elasti
 s
attering in one-photon ex
hange approximation. Solid, thi
k-solid and wavy lines denote respe
tively ele
trons, hadrons and photons.is obtained by negle
ting terms of order (!=mi)2 and higher, where!mi = q2� +m2f �m2i2m2i : (161)
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lear stru
ture information is 
ontained in the longitudinal and transverseform fa
tors denoted, respe
tively, by FL(q) and FT (q). By �xing q and ! andvarying �, it is possible to separate FL(q) from FT (q) in a pro
edure known asa Rosenbluth separation. Alternatively, by working at �=180Æ one ensures thatonly the transverse form fa
tor 
ontributes to the 
ross se
tion and so may beisolated (in this 
ase, we observe that the 
ombination �M tan2 �=2! (�=2�i)2 as� ! 180Æ, and is therefore �nite in this limit).The longitudinal and transverse form fa
tors are expressed in terms of redu
edmatrix elements of Coulomb (C), transverse ele
tri
 (E), and transverse magneti
(M) multipole operators as [1, 52, 92, 93℄F 2L(q) = 12Ji + 1 1XJ=0 jhJfkCJ(q)kJiij2 ; (162)F 2T (q) = 12Ji + 1 1XJ=1 �jhJfkEJ(q)kJiij2 + jhJfkMJ(q)kJiij2� ; (163)where we have de�nedCJM(q) � Z dx jJ(qx)YJM(x̂)�(x) ; (164)EJM(q) � 1q Z dx hr� jJ(qx)YMJJ1(x̂)i � j(x) ; (165)MJM(q) � Z dx jJ(qx)YMJJ1(x̂) � j(x) ; (166)with YMJL1(x̂) � XML;�hLML; 1�jJMiYLML(x̂) ê� ; (167)ê0 � êz, and ê�1 � �(êx � iêy)=p2. Here �(x) and j(x) are the nu
lear 
hargeand 
urrent density operators, and jJ(qx) are spheri
al Bessel fun
tions. Theredu
ed matrix elements in Eqs. (162){(163) are related to the matrix elementsof the Fourier transforms �(q) and j(q), introdu
ed in Chapter 4, via [1, 52℄:hJfMf j�(q)jJiMii = 4� 1XJ=0 JXM=�J iJY �JM(q̂)hJiMi; JM jJfMf iq2Jf + 1� hJfkCJ(q)kJii ; (168)



CHAPTER 5. TRINUCLEON FORM FACTORS 58hJfMf jê�(q) � j(q)jJiMii = �p2� 1XJ=1 JXM=�J iJp2J + 1DJ�M(��q; �q; �q)� hJiMi; JM jJfMf iq2Jf + 1� �� hJfkMJ(q)kJii+ hJfkEJ(q)kJii� ; (169)where � = �1, ê�(q) are the spheri
al 
omponents of the virtual photon transversepolarization ve
tor, and the DJ�M are standard rotation matri
es [93, 94℄. Theexpressions above 
orrespond to the virtual photon being absorbed at an angle�q, �q with respe
t to the quantization axis of the nu
lear spins, the ẑ-axis. They
an be obtained expressing the states quantized along ẑ as linear 
ombinations ofthose quantized along q̂:jJ Jziẑ =XJ 0z DJJ 0zJz(��q; �q; �q) jJ J 0ziq̂ : (170)The more familiar expressions for the multipole expansion of the 
harge and
urrent matrix elements are re
overed by taking q along the ẑ-axis, so thatY �JM(q̂)! ÆM;0p2J + 1=p4� and DJ�M(��q; �q; �q)! Æ�;M .It is useful to 
onsider the parity and time-reversal properties of the multipoleoperators [1, 52℄. The s
alar and polar ve
tor 
hara
ter of, respe
tively, the 
hargeand 
urrent density operators under parity transformations implies that CJM andEJM have parity (�1)J , while MJM has parity (�1)J+1. The resulting sele
tionrules are �i�f = (�1)J (�i�f = (�1)J+1) for Coulomb and transverse ele
tri
(magneti
) transitions, where �i and �f are the parities of the initial and �nalstates.The Hermitian 
hara
ter of the operators �(x) and j(x) as well as their trans-formation properties under time-reversal, �(x)! �(x) and j(x)! �j(x), 
an beshown to lead to the following relations:hJf jjCJ(q)jjJii = (�1)Jf+J�JihJijjCJ(q)jjJfi ; (171)hJf jjEJ=MJ(q)jjJii = (�1)Jf+J�Ji+1hJijjEJ=MJ(q)jjJfi : (172)These relations along with the parity sele
tion rules stated above require, in par-ti
ular, that elasti
 transitions, for whi
h Jf=Ji, 
an only be indu
ed by even-J
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 multipole operators.In the 
ase of elasti
 s
attering from the 3H and 3He nu
lei, for whi
h Ji =Jf = 1=2, the only 
ontributing multipoles are C0 and M1, and from Eqs. (162)and (163), we obtain: F 2L(q) = 12 j h12kC0k12i j2 ; (173)F 2T (q) = 12 j h12kM1k12i j2 : (174)From Eqs. (168) and (169), we have thatj h12kC0k12i j2 = 12� j h	+j�(qẑ)j	+i j2 ; (175)j h12kM1k12i j2 = 1� j h	+jjx(qẑ)j	�i j2 ; (176)where we have set q along the spin-quantization axis (the z-axis), 	+=� denotethe normalized trinu
leon wave fun
tions with total angular momentum proje
tionJz = �1=2, respe
tively, and jx(qẑ) is the x-
omponent of the 
urrent operator.Finally it 
an be shown [1, 93℄ that, for q ! 0h12kC0(q)k12i ' Zp2� ; (177)h12kM1(q)k12i ' ip� q�2m ; (178)where � is the trinu
leon magneti
 moment in nu
lear magnetons. Therefore weobtain for q ! 0 FL(q) ! Zp4� ; (179)FT (q) ! 1p2� q�2m : (180)The magneti
 and 
harge form fa
tors are then de�ned asFC(q) � p4�Z FL(q) ; (181)FM(q) � p2�2mq� FT (q) ; (182)



CHAPTER 5. TRINUCLEON FORM FACTORS 60so that FC=M(q = 0) = 1. From Eqs. (173)-(176), (181) and (182), we obtain thatFM(q) = 2m� 1q h	+ j jx(qẑ) j	�i ; (183)FC(q) = 1Z h	+ j �(qẑ) j	+i : (184)The 
harge and magneti
 radii hr2Ci and hr2Mi are �nally de�ned by the relationFC=M (q) ' 1� q2hr2C=Mi6 ; (185)whi
h 
an be easily obtained from the the de�nitions of the form fa
tors in thelimit q ! 0, keeping the leading and next-to-leading order term in the expansionof the Bessel fun
tions in Eqs. (164){(166). The 
harge and magneti
 radii asde�ned above are proportional to the \slopes"of the form fa
tors at q2 = 0.5.2 Cal
ulation DetailsThe matrix elements of the 
harge and 
urrent operators of Eqs. (183) and (184)are evaluated, without any approximation, by Monte Carlo integration based onthe Metropolis et al. algorithm [95℄. We des
ribe here the main steps of themethod. For more details see Refs. [67, 73, 76℄. A proof of the Metropolis algo-rithm is given in Ref. [93℄. We pro
eed as follows: (i) from a given starting spatial
on�guration of the three nu
leons R0 = (r1; r2; r3), we generate randomly the
on�guration R0 = (r01; r02; r03). (ii) The probability density W (R) for any given Ris de�ned as W (R) / 12 �h	y�(R)	�(R)i+ h	y+(R)	+(R)i� ; (186)where the notation h� � �i implies sums over the spin-isospin states of the wavefun
tions 	�. (iii) We 
al
ulate the ratior � W (R0)W (R0) ; (187)and generate a random number a between 0 and 1. If a � r, then R0 is a
-
epted, otherwise is reje
ted. (iv) The pro
edure is repeated N times and the
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epted spatial 
on�gurations are stored. (v) For ea
h of them, the state ve
torsjx(qẑ) j	�i and �(qẑ) j	+i are 
al
ulated, by performing exa
tly the spin-isospinalgebra, as des
ribed in Refs. [67, 73, 76℄. The momentum-dependent terms injx(qẑ) and �(qẑ) are 
al
ulated numeri
ally; for exampleri;�	(R) = 12Æi;� [	(R+ Æi;�)� 	(R� Æi;�)℄ ; (188)where Æi;� is a small in
rement in the ri;� 
omponent ofR. (vi) The spatial integralis then given by (for jx(qẑ), as an example)Z dr1 dr2 dr3	y+(r1 r2 r3) jx(qẑ)	�(r1 r2 r3) '1N NXp=1 1W (Rp)h	y+(Rp) jx(qẑ)	�(Rp)i ; (189)where the spin-isospin dependen
e is understood.The statisti
al error is proportional to 1=pN . Typi
ally, in the trinu
leon formfa
tor 
al
ulation reported here, 400,000 
on�gurations are enough to a
hieve arelative error of a few % at low and moderate values of momentum transfer q (q �5 fm�1), in
reasing to �30% at the highest q-values.The evaluation of the matrix element of Eq. (183) when also �-isobar degreesof freedom are 
onsidered, is more 
ompli
ated. In this 
ase, it is 
onvenient toexpand the full wave fun
tion 	N+�;Jz as	N+�;Jz = 	Jz +Xi<j UTRij 	Jz + : : : ; (190)and write, in a s
hemati
 notation:h	N+�;f j j j	N+�;ii = h	f j j(N only) j	ii + h	f j j(�) j	ii ; (191)where j(N only) denotes all one- and two-body 
ontributions to j(q) whi
h onlyinvolve nu
leon degrees of freedom, i.e., j(N only) = j(1)(N ! N) + j(2)(NN !NN). The operator j(�) in
ludes terms involving the �-isobar degrees offreedom, asso
iated with the expli
it � 
urrents j(1)(N *) �), j(1)(� ! �),j(2)(NN *) N�), and with the transition operators UTRij introdu
ed in Subse
-tion 4.1.5. The operator j(�) is illustrated diagrammati
ally in Figs. 11 and 12.



CHAPTER 5. TRINUCLEON FORM FACTORS 62The terms (a){(g) in Fig. 11 and (a){(f) in Fig. 12 are two-body 
urrent oper-ators. The terms (g){(l) in Fig. 12 are three-body 
urrent operators, while theterms (f) and (h){(j) in Fig. 11 are to be interpreted as renormalization 
orre
-tions to the \nu
leoni
" matrix elements h	f j j(Nonly) j	ii, due to the presen
eof �-admixtures in the wave fun
tions.
(a) (b) (c) (d)

(e) (f) (g)

(h) (i)  (j)FIG. 11: Diagrammati
 representation of operators in
luded in j(�) due to one-body 
urrents j(1)(N ! �), j(1)(� ! �), et
., transition 
orrelations UN�,U��, and 
orresponding Hermitian 
onjugates. Wavy, thin, thi
k, dashed and
ross-dashed lines denote photons, nu
leons, �-isobars and transition 
orrelationsUBB0 and UBB0 y, respe
tively.There are, however, additional, 
onne
ted three-body terms in j(�) that arenegle
ted in the present work. A number of these are illustrated in Fig. 13. Their
ontribution is expe
ted to be signi�
antly smaller than that from the terms inFigs. 11 and 12 involving transition 
orrelations between two parti
les only, of thetype UBB0ij y UBB0ij , but 
omparable to that from the three-body terms in Fig. 12having UBB0ij y UBB0jk . These have been found to be very small.The terms in Fig. 11 are expanded as operators a
ting on the nu
leons' 
o-ordinates. For example, the terms (a) and (e) in Fig. 11 have the stru
ture,respe
tively, (a) = j(1)i (�! N)U�Nij ; (192)
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i)  (j) (k) (l)FIG. 12: Diagrammati
 representation of operators in
luded in j(�) due to two-body 
urrents j(2)(NN ! N�), j(2)(NN ! �N), et
., transition 
orrelationsUN�, U��, and 
orresponding Hermitian 
onjugates. Wavy, thin, thi
k, dashedand 
ross-dashed lines denote photons, nu
leons, �-isobars and transition 
orre-lations UBB0 and UBB0 y, respe
tively.(e) = U�Nij y j(1)i (�! �)U�Nij ; (193)whi
h 
an be redu
ed to operators involving only Pauli spin and isospin matri
esby using the identitiesSy �AS �B = 23A �B� i3� � (A�B) ; (194)Sy �A� �BS �C = 53 iA � (B�C)� 13� �AB �C�13A �BC � � + 43A � (B � �)C ; (195)where A, B and C are ve
tor operators that 
ommute with �, but not ne
essarilyamong themselves.While the terms in Fig. 12 
ould have been redu
ed in pre
isely the sameway, the resulting expressions in terms of � and � Pauli matri
es be
ome too
umbersome. Thus, for these it was found to be more 
onvenient to retain theexpli
it representation of S (Sy) as a 4� 2 (2� 4) matrix
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(a) (b) (c)FIG. 13: Diagrams asso
iated with 
onne
ted three-body terms, whi
h are ne-gle
ted in the present work. Wavy, thin, thi
k, dashed, 
ross-dashed and dottedlines denote photons, nu
leons, �-isobars, transition 
orrelations UBB0 and UBB0 y,and the two-body 
urrent j(2)(NN ! NN), respe
tively.

S = 0BBBBBB� �ê� 0q23 ê0 � 1p3 ê�� 1p3 ê+ q23 ê00 �ê+
1CCCCCCA ;

where ê� = �(x̂ � iŷ)=p2, ê0 = ẑ, and ê�� = (�)�ê�� and derive the resultof terms su
h as (a)+(
)+(e)=UN�ij y j(2)ij (NN ! N�) on the state j	i by �rstoperating with j(2) and then with UN�y. The Monte Carlo evaluation of thematrix element is then performed with methods similar to those des
ribed above.We �nally note that perturbation theory (PT) estimates of the �-isobar ex-
itation 
urrents in photo- and ele
tro-nu
lear observables typi
ally in
lude onlythe 
ontribution from single N *) � transitions (namely diagrams (a) and (b)in Fig. 11) and ignore the 
hange in the wave fun
tion normalization. In par-ti
ular, the PT expressions for the three-body terms in Fig. 12, diagrams (g)-(l)along with those in whi
h the �rst and third legs are ex
hanged, 
an easily beshown to satisfy 
urrent 
onservation with the Fujita-Miyazawa two-pion ex
hangethree-nu
leon intera
tion (2�TNI) [37℄ des
ribed in Chapter 2, whi
h provides the\long-range"
omponent of the three-nu
leon intera
tion.
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tion we present results for the magneti
 moments, 
harge and magneti
form fa
tors and radii of 3H and 3He. In Subse
tion 5.3.1 we present the resultsobtained when only the nu
leoni
 degrees of freedom are 
onsidered, while inSubse
tion 5.3.2 we present the results obtained by in
luding also the �-isobardegrees of freedom. The nu
lear ground states are des
ribed by the PHH wavefun
tions obtained from the AV18/UIX Hamiltonian model. A dis
ussion of theele
tromagneti
 
urrent and 
harge operators has been given in Chapter 4.5.3.1 Nu
leons OnlyWe present here our results for the magneti
 and 
harge form fa
tors when purelynu
leoni
 wave fun
tions are used.The Magneti
 Form Fa
torsThe 
urrent operator in
ludes, in addition to the one-body 
urrent in Eq. (54),the model-independent (MI) two-body 
urrents PS, V, SO, LL and SO2, ob-tained from the 
harge-independent part of the AV18 intera
tion, the model-dependent (MD) ��
 and !�
 two-body 
urrents, and �nally the lo
al terms ofthe ��S three-body 
urrent asso
iated with the S-wave two-pion ex
hange three-nu
leon intera
tion of Eq. (93). Be
ause of destru
tive interferen
e between theS- and D-state 
omponents of the wave fun
tion, the one-body predi
tions forthe 3H and 3He magneti
 form fa
tors (MFF) have distin
t minima at around�3.5 fm�1 and �2.5 fm�1, respe
tively, in disagreement with the experimentaldata [96, 97, 98, 99, 100, 101, 102, 103, 104, 105℄, as shown in Fig. 14. In
lusionof the 
ontributions from the two- and ��S three-body 
urrents shifts the zerosin the 
al
ulated MFF to higher q-values. While the experimental 3H MFF isin good agreement with theory over a wide range of momentum transfers, thereis a signi�
ant dis
repan
y between the measured and 
al
ulated values of the3He MFF in the region of the �rst di�ra
tion minimum. As pointed out alreadyin Chapter 4, this 
al
ulation is a�e
ted by the rather poor knowledge of the
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tromagneti
 form fa
tors. In Fig. 14 we show also the results ob-tained with the Gari-Kr�umpelmann (GK) parametrization [106℄ of the nu
leonele
tromagneti
 form fa
tors, to 
he
k whether this dis
repan
y between theoryand experiment persists when di�erent parametrizations of the nu
leon ele
tro-magneti
 form fa
tors are used. No improvement in des
ribing the experimentalresults has been found. To fully investigate this aspe
t, however, the most re
entresults for the nu
leon (in parti
ular proton) ele
tromagneti
 form fa
tors [107℄should be 
onsidered.
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FIG. 14: The magneti
 form fa
tors of 3H and 3He, obtained with single-nu
leon
urrents (1-N), and with in
lusion of two-nu
leon 
urrent ((1+2)-N) and ��Sthree-nu
leon (TOT-N(D)) 
urrent 
ontributions, are 
ompared with data (shadedarea) from Amroun et al: [105℄. Theoreti
al results 
orrespond to the AV18/UIXPHH wave fun
tions, and employ the dipole parametrization (in
luding the Gal-ster fa
tor for GE(q2�)) for the nu
leon ele
tromagneti
 form fa
tors. Note thatthe Sa
hs form fa
tor GVE(q2�) is used in the model-independent isove
tor two-body
urrents obtained from the 
harge-independent part of the AV18 intera
tion. Alsoshown are the total results 
orresponding to the Gari-Kr�umpelmann parametriza-tion [106℄ of the nu
leon ele
tromagneti
 form fa
tor (TOT-N(GK)).To have a better insight into the ele
tromagneti
 
urrent operator and thestru
ture of the three-nu
leon systems, it is useful to de�ne the quantitiesF S;VM (q) = 12 [�(3He)FM(q; 3He)� �(3H)FM(q; 3H)℄ ; (196)



CHAPTER 5. TRINUCLEON FORM FACTORS 67where �(3He) and �(3H) are the magneti
 moments of 3He and 3H respe
tively.In fa
t, if the 3H and 3He ground states were pure T=1/2 states, then the F SMand F VM linear 
ombinations of the three-nu
leon MFF would be only in
uen
edby, respe
tively, the isos
alar (S) and isove
tor (V ) parts of the 
urrent operator.For example, the one-body 
urrent has the isospin stru
turej(1)i = jSi + jVi �i;z : (197)From Eq. (196), using the de�nition of Eq. (183), we obtainF SM(q) / hXi jSi i ; (198)F VM(q) / hXi jVi i ; (199)in a s
hemati
 notation. However, the 3H and 3He ground states are not pureT=1/2 states; in fa
t, the ele
tromagneti
 and isospin-symmetry breaking termspresent in the AV18 intera
tion, generate small isospin admixtures with T >1/2.As a 
onsequen
e, purely isos
alar (isove
tor) 
urrent operators give small, oth-erwise vanishing, 
ontributions to the F VM (F SM) MFF.Among the two- and three-body 
urrent operators des
ribed in Chapter 4, thePS, V, !�
 and ��S 
urrents are purely isove
tor, while ��
 is purely isos
alar.As already pointed out in Se
tion 4.1.2, the momentum-dependent 
urrents SO,LL, SO2 have both isos
alar and isove
tor terms. The one-body 
urrent has also,as already dis
ussed, both isos
alar and isove
tor 
omponents.The 
ontributions of the individual 
omponents of the two- and three-nu
leon(��S term) 
urrents to the F SM and F VM 
ombinations are shown in Fig. 15. In thedi�ra
tion region the PS isove
tor 
urrent gives the dominant 
ontribution to F VM ,while the 
ontributions from remaining 
urrents are about one order of magnitudeor more smaller. The ��S 
urrent is found to give a very small 
orre
tion.Among the two-body 
ontributions to F SM , the most important is that dueto the SO 
urrents, the remaining operators produ
ing a very small 
orre
tion.Note that the isove
tor PS and V 
urrents 
ontribute to F SM be
ause of the smallisospin-symmetry breaking 
omponents present in the 3H and 3He wave fun
tionsindu
ed by the AV18 model, as mentioned earlier.
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FIG. 15: Individual 
ontributions to the F SM(q�) and F VM(q�) 
ombinations,Eq. (196), of the 3H and 3He magneti
 form fa
tors, obtained with the dipoleparametrization of the nu
leon ele
tromagneti
 form fa
tors. The sign of ea
h 
on-tribution is given in parenthesis. Note that, be
ause of isospin-symmetry breaking
omponents present in the 3H and 3He wave fun
tions, the purely isove
tor PS, Vand ��S 
urrents (purely isos
alar ��
 
urrent) give non vanishing 
ontributionsto the F SM(q�) (F VM(q�)) 
ombination. However as the ��S (��
) 
ontribution isvery small, is not shown.Finally, the 
umulative 
ontributions to the F SM and F VM 
ombinations are
ompared with the experimental data [105℄ in Fig. 16. The isos
alar form fa
torF SM(q) is rather poorly known, espe
ially at higher q-values. Some dis
repan
iesare present between the full 
al
ulation (
urve labelled TOT-N) and the experi-mental results at moderate q-values. For the isove
tor form fa
tor F VM , the zerois 
al
ulated to o

ur at lower q-value than experimentally observed. As shownin the next Se
tion, this dis
repan
y between theory and experiment remains un-resolved even when �-isobar degrees of freedom are in
luded in both the nu
learwave fun
tions and 
urrents.Predi
tions for the magneti
 moments are given in Tables VII and VIII, whilethose for the magneti
 radii are listed in Table IX. These results are dis
ussed inSubse
tion 5.3.2.
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FIG. 16: The F SM (q�) and F VM(q�) 
ombinations of the 3H and 3He magneti
 formfa
tors, obtained with single-nu
leon 
urrents (1-N), and with in
lusion of two-nu
leon 
urrent ((1+2)-N) and ��S three-nu
leon 
urrent (TOT-N) 
ontributions,are 
ompared with data (shaded area) from Amroun et al: [105℄. The dipoleparametrization is used for the nu
leon ele
tromagneti
 form fa
tors.The Charge Form Fa
torsThe 
harge operator in
ludes, in addition to the one-body term of Eq. (55), thePS, V, !, ��
 and !�
 two-body operators, dis
ussed in Chapter 4. The 
al
u-lated 3H and 3He 
harge form fa
tors (CFF) are 
ompared with the experimentaldata [96, 97, 98, 99, 100, 101, 102, 103, 104, 105℄ in Fig. 17. There is ex
el-lent agreement between theory and experiment, as is 
lear from this �gure. Theimportant role of the two-body 
ontributions above 3 fm�1 is also evident. Theremarkable su

ess of the present pi
ture based on non-relativisti
 wave fun
-tions and a 
harge operator in
luding the leading relativisti
 
orre
tions shouldbe stressed. It suggests, in parti
ular, that the present model for the two-body
harge operator is better than one a priori should expe
t. These operators, su
has the PS 
harge operator, fall into the 
lass of relativisti
 
orre
tions. Thus,evaluating their matrix elements with non-relativisti
 wave fun
tions representsonly the �rst approximation to a systemati
 redu
tion. A 
onsistent treatment
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FIG. 17: The 
harge form fa
tors of 3H and 3He, obtained with a single-nu
leon
harge operator (1-N) and with in
lusion of two-nu
leon 
harge operator 
ontribu-tions (TOT-N), are 
ompared with data (shaded area) from Amroun et al: [105℄.Note that the 1-N results also in
lude the Darwin-Foldy and spin-orbit 
orre
-tions. Theoreti
al results 
orrespond to the AV18/UIX PHH wave fun
tions, andemploy the dipole parametrization of the nu
leon ele
tromagneti
 form fa
tors.of these relativisti
 e�e
ts would require, for example, in
lusion of the boost 
or-re
tions on the nu
lear wave fun
tions [71, 72, 108℄. Yet, the ex
ellent agreementbetween the 
al
ulated and measured CFF suggests that these 
orre
tions maybe negligible in the q-range explored so far.For 
ompleteness, we show in Fig. 18 the 
ontributions from the individual
omponents of the 
harge operator to the isos
alar (S) and isove
tor (V ) formfa
tors, de�ned, similarly to Eq. (196), asF S;VC (q) = 12 h2FC(q;3He)� FC(q;3H)i : (200)Similar observations to the ones made for F S=VM (q) are valid also for F S;VC (q). Wenote that the PS, V and ! 
harge operators 
ontain both isos
alar and isove
tor
omponents, see Eqs. (100){(102), while the !�
 and ��
 
harge operators are,respe
tively, purely isove
tor and isos
alar.Finally, values for the 
harge radii of 3H and 3He are listed in Table VI. Theresults in
luding the 
ontributions asso
iated with the two-body 
harge operators
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FIG. 18: Individual 
ontributions to the F SC (q�) and F VC (q�) 
ombinations,Eq. (200), of the 3H and 3He 
harge form fa
tors, obtained with the dipoleparametrization of the nu
leon ele
tromagneti
 form fa
tors. The sign of ea
h
ombination is given in parenthesis. Note that, be
ause of isospin-symmetrybreaking 
omponents present in the 3H and 3He wave fun
tions, the purely isove
-tor !�
 (isos
alar ��
) 
harge operator gives a non vanishing 
ontribution to theF SC (q�) (F VC (q�)) 
ombination.are found to be in ex
ellent agreement with experimental data.5.3.2 Nu
leons and �'sThe 3H and 3He magneti
 form fa
tors obtained by in
luding nu
leon and �-isobar degrees of freedom in the nu
lear wave fun
tions and 
urrents are shown inFig. 19; individual 
ontributions to the 
ombinations F SM and F VM are displayedin Fig. 20. Finally, individual and 
umulative 
ontributions to the magneti
 mo-ments and 
umulative 
ontributions to the magneti
 radii of the trinu
leons arelisted in Tables VII, VIII and IX, respe
tively. Note that in Fig. 20 and Ta-ble VII the 
ontributions labelled 1-� and 2-� are asso
iated with the diagramsin Figs. 11 and 12, respe
tively. Also note that the individual nu
leoni
 and �-isobar 
ontributions in Fig. 20 and Table VII are normalized as, in a s
hemati




CHAPTER 5. TRINUCLEON FORM FACTORS 72TABLE VI: Cumulative and normalized 
ontributions to the 3H and 3He r.m.s.
harge radii, in fm, 
ompared with the experimental data.3H 3He1-N 1.711 1.919TOT 1.725 1.928expt. 1.755�0.086 1.959�0.030
notation, [O℄ = h	 j jO j	ih	 j	i : (201)However, the 
umulative 
ontributions in Fig. 19 and Table VIII and IX arenormalized as [TOT�N℄ = h	 j j(N only) j	ih	 j	i ; (202)when \nu
leons only" terms are retained, and as[TOT�(N +�)℄ = h	N+� j j(N +�) j	N+�ih	N+� j	N+�i ; (203)when, in addition, the � terms are in
luded. This last expression takes into a
-
ount the 
hange in wave fun
tion normalization indu
ed when the �-admixturesare in
luded.The MFF of 3H and 3He, when the full model for the 
urrent operator is used(
urves labelled TOT-(N+�)) are in rather good agreement with experiment upto q-values of ' 4 fm�1 and ' 3 fm�1, respe
tively. The dis
repan
y betweentheory and experiment, espe
ially in the 3He MFF �rst di�ra
tion region, remainsunsolved. In fa
t, the �-
ontributions have been found to be rather small, as 
anbe seen in Fig. 19 
omparing the 
urves labelled TOT-N and TOT-(N+�), andin Fig. 20, 
omparing the 1-N with the 1-� and 2-� 
ontributions. This is in
ontrast with earlier studies [109℄, where it was suggested that the in
lusion of�-isobar degrees of freedom 
ould reprodu
e the experimental data in the regionof the �rst zero. In fa
t, the 2-� 
ontribution obtained in that study [109℄ hadthe wrong sign (opposite to that obtained here).
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FIG. 19: The magneti
 form fa
tors of 3H and 3He, obtained with single-nu
leon
urrents (1-N), and with in
lusion of two- and three-nu
leon 
urrent (TOT-N)and � (TOT-(N+�)) 
ontributions.The predi
ted magneti
 moments of the trinu
leons are within less than 1% ofthe experimental values. The predominantly isove
tor �-isobar 
ontributions leadto an in
rease (in magnitude) of the 3H and 3He magneti
 moments 
al
ulatedwith nu
leons only degrees of freedom of, respe
tively, 1.1% and 1.7%. We notethat perturbation theory estimates of the �-isobar 
ontributions are found to besigni�
antly larger than obtained here [67℄.The predi
ted magneti
 radii of 3H and 3He are, respe
tively, 2% and 3%smaller than the experimental values, but still within experimental errors. In
lu-sion of the 
ontributions due to two- and three-body ex
hange 
urrents leads toa de
rease of the 3H and 3He magneti
 radii by, respe
tively, 5% and 6%.
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FIG. 20: The single-nu
leon 
ontribution to the F SM(q�) and F VM(q�) 
ombinationof the 3H and 3He magneti
 form fa
tors is 
ompared with the 1-� and 2-�
ontributions, asso
iated respe
tively with diagrams of Fig. 11 and 12.TABLE VII: Individual 
ontributions from the di�erent 
omponents of the nu
learele
tromagneti
 
urrent operator to the 3H and 3He magneti
 moments and their�S and �V 
ombinations, in nu
lear magnetons (n.m.). Note that, be
ause ofisospin-symmetry breaking 
omponents present in the PHH 3H and 3He wavefun
tions, purely isos
alar (isove
tor) 
urrents give non vanishing 
ontributionsto the �V (�S) 
ombination. The 
ontributions to �S due to the ��S and 2-�
urrents and those to �V due to the SO2+LL 
urrents are very small and are notlisted. �(3H) �(3He) �S �V1-N 2.571 {1.757 0.407 2.164PS 0.274 {0.269 0.002 0.271V 0.046 {0.044 0.001 0.045SO 0.057 0.010 0.033 0.023SO2+LL {0.005 {0.006 {0.005��
+!�
 0.016 {0.009 0.003 0.012��S 0.002 {0.002 0.0021-� 0.084 {0.064 0.010 0.0742-� 0.024 {0.024 0.024
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TABLE VIII: Cumulative and normalized 
ontributions to the 3H and 3He mag-neti
 moments and their �S and �V 
ombinations, in nu
lear magnetons (n.m.),
ompared with the experimental data.�(3H) �(3He) �S �V1-N 2.571 {1.757 0.407 2.164TOT-N 2.961 {2.077 0.442 2.519TOT-N+1-� 2.971 {2.089 0.441 2.530TOT-(N+�) 2.994 {2.112 0.441 2.553expt. 2.979 {2.127 0.426 2.553

TABLE IX: Cumulative and normalized 
ontributions to the 3H and 3He r.m.s.magneti
 radii, in fm, 
ompared with the experimental data.3H 3He1-N 1.895 2.040TOT-N 1.810 1.925TOT-N+1-� 1.804 1.916TOT-(N+�) 1.800 1.909expt. 1.840�0.181 1.965�0.153



Chapter 6The 3He ThresholdEle
trodisintegrationRadiative 
apture, photodisintegration and ele
trodisintegration rea
tions areother useful tools for exploring the stru
ture of nu
lei and their ele
tromagneti
responses, besides elasti
 ele
tron-s
attering. In the parti
ular 
ase of the three-nu
leon systems, there is a large body of experimental results for pd radiativefusion and 3He photodisintegration and ele
trodisintegration at threshold. Forthe 3He ele
trodisintegration rea
tion, however, the data are still quite un
ertain.A systemati
 study of these pro
esses using AV18/UIX PHH wave fun
tions andin
luding one- and two-body 
omponents in the model of the ele
tromagneti
transition operators, has been performed in Ref. [15℄.In this Chapter we limit our dis
ussion to the 3He threshold ele
trodisintegra-tion rea
tion. In Se
tion 6.1 we de�ne the observables of interest for the rea
tion~3He(~e; e0)pd at threshold. In Se
tion 6.2 we list the terms in
luded in the ele
-tromagneti
 
urrent and 
harge operators and des
ribe some 
al
ulation details.Finally in Se
tion 6.3 we present and dis
uss our results.
76



CHAPTER 6. THE 3HE THRESHOLD ELECTRODISINTEGRATION 776.1 The ~3He(~e; e0)pd Rea
tion at ThresholdThe in
lusive 
ross se
tion for polarized ele
tron s
attering from a polarized spin1/2 target 
an be written as [15, 110℄d3�d
d! = �(q; !) + h�(q; !) ; (204)�(q; !) = �M [vLRL(q; !) + vTRT (q; !)℄ ; (205)�(q; !) = �M [vLT 0RLT 0(q; !) sin �� 
os�� + vT 0RT 0(q; !) 
os ��℄ ; (206)where �M is the Mott 
ross se
tion de�ned in Eq. (157), the 
oeÆ
ients v� arefun
tions of the ele
tron kinemati
 variables, h = �1 is the heli
ity of the in
identele
tron, and the angles �� and �� spe
ify the dire
tion of the target polarizationwith respe
t to q̂, see Fig. 21.
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FIG. 21: Kinemati
 and 
oordinate system for s
attering of polarized ele
tronsfrom a polarized target.The kinemati
 fun
tions vL and vT are de�ned in Eqs. (158) and (159), whilevLT 0 and vT 0 are given byvLT 0 = � 1p2 q2�q2 tan �2 ; (207)



CHAPTER 6. THE 3HE THRESHOLD ELECTRODISINTEGRATION 78vT 0 = vuutq2�q2 + tan2 �2 tan �2 : (208)The response fun
tions R� 
ontain the nu
lear stru
ture information. They arede�ned in terms of the nu
lear 
harge and 
urrent operators �(q) and j(q) as:RL � Xf j hf j �(q) j	3; 12�3i j2 ; (209)RT � Xf j hf j j(q) j	3; 12�3i j2 ; (210)RLT 0 � �2X� <fXf hf j �(q) j	3; 12�3i� hf j j�(q) j	3; 12�3ig ; (211)RT 0 � X� Xf [� j hf j j�(q) j	3; 12�3i j2 ℄ ; (212)where 	3; 12�3 is the initial 3He bound state wave fun
tion with spin proje
tion �3,and � = �1 denote the spheri
al 
omponents of the 
urrent operator. We notethat the sum over the three-nu
leon �nal states jfi is in fa
t restri
ted to in
ludeonly the pd 
ontinuum, sin
e the ex
itation energies of interest here are below thethreshold for the three-body breakup. Finally, note that the unpolarized 
rossse
tion is obtained from Eq. (204), summing over the ele
tron heli
ities. Thelongitudinal-transverse and transverse-transverse asymmetries ALT 0 and AT 0 arerelated to the fun
tions v� and R� via the relations:ALT 0(q; !) = vLT 0RLT 0(q; !)vLRL(q; !) + vTRT (q; !) ;AT 0(q; !) = vT 0RT 0(q; !)vLRL(q; !) + vTRT (q; !) : (213)To obtain expli
it expressions for the response fun
tions R� in terms of theredu
ed matrix elements of Coulomb (C), transverse ele
tri
 (E) and transversemagneti
 (M) multipole operators, already de�ned in Eqs. (164){(166), we �rstintrodu
e the ele
tromagneti
 transition amplitudes between the initial 3He boundstate and the �nal pd 
ontinuum state having proton and deuteron with relativemomentum p and spin proje
tions, respe
tively, �2 and �. These transition am-plitudes are given by ���2�3(p;q) = h	(�)p;��2 j�(q)j	3; 12�3i ; (214)



CHAPTER 6. THE 3HE THRESHOLD ELECTRODISINTEGRATION 79j���2�3(p;q) = h	(�)p;��2 j�̂�(q) � j(q)j	3; 12�3i ; (215)where q is the momentum transfer and �̂�(q), � = �1, are the transverse polariza-tions of the virtual photon. The wave fun
tion 	(�)p;��2 with ingoing-wave boundary
ondition is expanded as	(�)p;��2 = 4�XSSzh12�; 1�2jSSzi XLLzJJz iL hSSz; LLzjJJziY �LLz(p̂)	LSJJz(�)1+2 ; (216)where the 	LSJJz(�)1+2 are related to the 	LSJJz1+2 introdu
ed in Se
tion 3.2 via	LSJJz(�)1+2 = e�i�L XL0S0 h1 + iRJi�1LS;L0S0 	L0S0JJz1+2 : (217)Here RJ is the R-matrix in 
hannel J and �L is the Coulomb phase shift, givenby �L = arg[�(L + 1 + i�)℄ ; (218)with � de�ned as � = 2�vrel ; (219)� being the �ne stru
ture 
onstant and vrel the pd relative velo
ity. Introdu
ingthe expansion of Eqs. (216) and (217) into the matrix elements of Eqs. (214){(215),one �nds:j���2�3(p;q) = 4� XLLzSSzJJz(�i)Lh12�; 1�2jSSzihSSz; LLzjJJziYLLz(p̂) jLSJJz��3(q) ;(220)jLSJJz��3(q) = h	LSJJz(�)1+2 j�̂�(q) � j(q)j	3; 12�3i ; (221)and similar expressions hold for the ���2�3(p;q) amplitudes. When q̂ is takenalong the z-axis, i.e. the spin-quantization axis, standard te
hniques [93℄ lead tothe following expansions for the amplitudes �LSJJz�3(q) and jLSJJz��3(q) in terms ofredu
ed matrix elements of Coulomb, transverse ele
tri
 and transverse magneti
multipoles: �LSJJz�3(qẑ) = p4� 1X̀=0 i`s 2`+ 12J + 1h12�3; `0jJJzi CLSJ` (q) ; (222)



CHAPTER 6. THE 3HE THRESHOLD ELECTRODISINTEGRATION 80jLSJJz��3(qẑ) = �p2� 1X̀=1 i`s 2`+ 12J + 1h12�3; `�jJJzi [�MLSJ` (q) + ELSJ` (q)℄ : (223)Here TLSJ` (q) is a short notation for h	LSJ(�)1+2 kT`(q)k	3; 12 i, with T � C, E, M .The 
al
ulation of the matrix elements �LSJJz�3(qẑ) and jLSJJz��3(qẑ) is des
ribed inthe next Se
tion. Given �LSJJz�3(qẑ) and jLSJJz��3(qẑ), the redu
ed matrix elementsCLSJ` (q), MLSJ` (q) and ELSJ` (q) are obtained inverting Eqs. (222) and (223). Forexample we have: CLS 120 (q) = 1p2��LS 1212 12 (qẑ) ; (224)MLS 321 (q) = ip2� �p3jLS 3232 1 12 (qẑ)� jLS 32� 12 �1 12 (qẑ)� : (225)Using Eqs. (214){(223), the expli
it expressions for the response fun
tions R�in terms of the redu
ed matrix elements of the multipole operators are given by:RL = fpd XLSJ` jCLSJ` j2 ; (226)RT = fpd XLSJ`(jELSJ` j2 + jMLSJ` j2) ; (227)RLT 0 = 2p2 fpd XLSJ qJ+1=22J+1 <"�CLSJ� + iCLSJ+ ��hqJ�1=2 (MLSJ� + ELSJ� )�iqJ+3=2 (MLSJ+ + ELSJ+ )i# ; (228)RT 0 = 2 fpd XLSJ 12J + 1"jMLSJ� + ELSJ� j2 � jMLSJ+ + ELSJ+ j2� 2q(J+3=2)(J�1=2)= h(MLSJ� + ELSJ� )�(MLSJ+ + ELSJ+ )i# ; (229)where the phase-spa
e fa
tor fpd is given by fpd = 4�p, and in the interferen
eresponse fun
tions the notation TLSJ� for the redu
ed matrix elements meansTLSJ`=J�1=2. The magnitude of the relative momentum p is �xed by energy 
on-servation ! + E3 = E2 + q22(m2 +m) + p22� ; (230)



CHAPTER 6. THE 3HE THRESHOLD ELECTRODISINTEGRATION 81where E2 and E3 are the two- and three-body ground-state energies, m2 is thedeuteron mass and � is the 1+2 redu
ed mass. We will refer to the term p2=(2�)as ex
itation energy and it will be indi
ated with !X below.6.2 Cal
ulationThe model for the 
urrent operator in the matrix element j���2�3(p;q) of Eq. (215)in
ludes, besides the standard one-body term of Eq. (54), also the model-independent (MI) two-body operators PS, V, SO, LL and SO2, obtained from the
harge-independent part of the AV18 intera
tion, the model-dependent (MD) ��
and !�
 two-body 
urrents, and �nally the two-body �-
ontributions arising fromthe ji(q;N *) �) and ji(q; �! �) operators de�ned in Eqs. (118) and (119), re-spe
tively. The three-body 
urrents asso
iated with the S-wave two-pion ex
hangethree-nu
leon intera
tion (terms labelled ��S in the previous Chapters) and withthe NN *) N� transition have not been in
luded. The 
ontributions of theseterms were found already small in the trinu
leon form fa
tor 
al
ulations [13℄, asdis
ussed in Chapter 5.The model for the 
harge operator in the matrix element ���2�3(p;q) ofEq. (214), 
ontains the standard one-body term of Eq. (55), and the two-body
ontributions PS, V, !, ��
 and !�
.The matrix elements of Eqs. (214) and (215) are 
al
ulated using the sameMonte Carlo te
hniques based on the Metropolis et al. algorithm [95℄ as the onesdis
ussed in Se
tion 5.2. We have again used the probability density W (R) ofEq. (186), with 	� � 	3; 12 � 12 .Due to the restri
ted model for the �-
urrents, whi
h in
ludes only ji(q;N *)�) and j(q; � ! �), we do not retain the �-
ontributions asso
iated with thediagrams of Fig. 12. Instead, only the terms shown in Fig. 11 have been 
onsidered.These have been 
al
ulated with the te
hniques des
ribed in Se
tion 5.2.



CHAPTER 6. THE 3HE THRESHOLD ELECTRODISINTEGRATION 826.3 ResultsThe most re
ent and systemati
 experimental study of the unpolarized thresholdele
trodisintegration of 3He and 3H we are aware of was 
arried out by Retzla� etal. [111℄ at the MIT/Bates Linear A

elerator Center. The longitudinal and trans-verse response fun
tions RL and RT were obtained using Rosenbluth separationsfor three-momentum transfers in the range 0.88{2.87 fm�1 and ex
itation energiesfrom two-body thresholds up to 18 MeV. We are interested here to the in
lusive3He ele
tron s
attering data, whi
h are in agreement with the measurements ofearlier experiments [112℄, after s
aling for the slightly di�erent kinemati
s. No
al
ulations of the 3H response fun
tions have been 
arried out in the presentstudy.
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FIG. 22: The longitudinal and transverse response fun
tions of 3He, obtained withthe AV18/UIX Hamiltonian model and one-body only (dashed lines) or both one-and two-body (solid lines) 
harge and 
urrent operators, are 
ompared with thedata of Ref. [111℄ at ex
itation energies below the ppn breakup threshold.The 3He RL and RT results at momentum transfer values q=0.88, 1.64 and



CHAPTER 6. THE 3HE THRESHOLD ELECTRODISINTEGRATION 832.47 fm�1 are shown in Fig. 22, where the data are 
ompared with our 
al
ulationsperformed using one-body only (dashed lines) or both one- and two-body (solidlines) 
harge and 
urrent operators. We have here retained the 
ontributions fromL=0{5 pd s
attering states (see Eqs. (226) and (227)), and we have veri�ed thatthe expansion is then fully 
onverged. There is satisfa
tory agreement betweentheory and experiment for all 
ases, but for the longitudinal response at q=2.47fm�1. The data are a�e
ted however by rather large errors. The two-body 
om-ponents of the transition operator play an important role, parti
ularly for thetransverse response at the highest q-values. The relative sign between the one-and two-body 
ontributions is 
onsistent with that expe
ted from elasti
 formfa
tor studies of 3He [13℄. As already seen in Se
tion 5.3, the two-body 
urrent(
harge) operators in
rease (de
rease) the one-body predi
tions for the magneti
(
harge) form fa
tor at q � 3 fm�1.In Fig. 23 we show the RL, RLT 0, RT and RT 0 response fun
tions at a �xedex
itation energy !X = 1 MeV above the pd threshold, in the three-momentumtransfer range 0{5 fm�1. In RL and RLT 0 the L = 0 pd 
ontinuum states givethe dominant 
ontribution, while in RT and RT 0 both L = 0 and L = 1 statesgive equally important 
ontributions over the whole q range. As 
an be seen
omparing the 
urves where only one-body 
ontributions are retained (labelled\IA") and those with both one- and two-body 
ontributions (labelled \FULL"),all response fun
tions are substantially a�e
ted by two-body 
urrents, espe
iallyRLT 0 and RT 0 .Finally, in Fig. 24 we show the unpolarized 
ross se
tion, and the ALT 0 and AT 0asymmetries in the threshold region at an in
ident ele
tron energy of 4 GeV. Theasymmetries are relatively large at high q, and parti
ularly sensitive to two-body
urrents. The 
ross se
tion for the 
hosen kinemati
s (in
ident ele
tron energyof 4 GeV, �xed pd ex
itation energy of 1 MeV, and 0Æ < � < 14Æ) is dominatedby the longitudinal response fun
tion. Note that in Fig. 24 we also show theplane-wave-impulse-approximation (PWIA) results. These have been 
al
ulated



CHAPTER 6. THE 3HE THRESHOLD ELECTRODISINTEGRATION 84by approximating the wave fun
tion as	LSJJz1+2 (PWIA) = X
y
li
 ijk h[si 
 �d(xi)℄S 
 YL(ŷi)iJJz FL(prpd)prpd : (231)See Se
tion 3.2 for notations. The large di�eren
e between the PWIA and theIA and FULL results indi
ates that the �nal-state intera
tion between the protonand the deuteron plays an important role.
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FIG. 23: The longitudinal (RL), longitudinal-transverse (RLT 0), transverse (RT )and transverse-transverse (RT 0) response fun
tions of 3He, obtained with theAV18/UIX Hamiltonian model and one-body only (thi
k dashed lines) or bothone- and two-body (thi
k solid lines) 
harge and 
urrent operators, are displayedat a �xed ex
itation energy of 1 MeV for three-momentum transfers in the range0{5 fm�1. In RL and RLT 0 we show the 
ontributions asso
iated with the (dom-inant) S-wave pd s
attering states, while in RT and RT 0 both S- and P-wave
ontributions are shown.
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FIG. 24: The in
lusive 
ross se
tion, and the ALT 0 and AT 0 asymmetries, obtainedwith the AV18/UIX Hamiltonian model and one-body only (dashed lines) or bothone- and two-body (solid lines) 
harge and 
urrent operators, are displayed for3He at a �xed ex
itation energy of 1 MeV for three-momentum transfers in therange 0{5 fm�1. The results in PWIA (dotted lines) are also shown. The in
identele
tron energy is 4 GeV, and the ele
tron s
attering angle is in the range 0{14Æ.



Chapter 7The hep Rea
tionThere has been re
ently a revival of interest in the pro
ess 3He(p,e+�e)4He [18, 19,20, 21, 22℄, known as the hep rea
tion. This interest has been spurred by the Super-Kamiokande (SK) 
ollaboration measurements of the energy spe
trum of ele
tronsre
oiling from s
attering with solar neutrinos [23, 113, 114℄. At energies largerthan 14 MeV, more re
oil ele
trons have been observed than expe
ted relativeto standard-solar-model (SSM) predi
tions [24℄, redu
ed by a fa
tor of ' 0:5 to�t the lower-energy bins. The hep pro
ess is the only sour
e of solar neutrinoswith energies larger than 15 MeV{their end-point energy is about 19 MeV. TheSSM neutrino 
ux spe
tra [24℄ are shown in Fig. 25. Sin
e the hep pro
ess hastoo small a 
ross se
tion to be studied experimentally, the asso
iated neutrino
ux is based only on theoreti
al 
al
ulations [25℄. The dis
repan
y between theobserved and SSM energy spe
tra has therefore led to question the reliability ofthese hep 
ross se
tion 
al
ulations. In parti
ular, the SK 
ollaboration [23℄ hasshown that a large enhan
ement, by a fa
tor of about 17, of the hep 
ontributionwould essentially �t the observed ex
ess of re
oiling ele
trons.The theoreti
al des
ription of the hep pro
ess 
onstitutes a 
hallenging prob-lem from the standpoint of nu
lear few-body theory, as dis
ussed in Refs. [14, 16℄.To explain this aspe
t, we 
onsider the limit in whi
h the momentum transferq of the rea
tion is set to zero. This approximation was taken in all previous
al
ulations, and it 
an appear to be adequate, sin
e, for the hep rea
tion, q �87
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FIG. 25: The SSM solar neutrino energy spe
trum. The 
ontinuum neutrino
uxes are given in 
m�2 se
�1 MeV�1, the lines in 
m�2 se
�1.20 MeV/
. Introdu
ing the 2S+1LJ notation for the p 3He initial state (S=0,1is the 
hannel spin, L the two 
lusters relative orbital angular momentum andJ = L + S), in the q = 0 limit the hep rea
tion is indu
ed only by the axial 
ur-rent and axial 
harge operators, a
ting, respe
tively, between the initial 3S1 and3P0 
apture 
hannels and the �nal J� = 0+ 4He ground state. When P-wave 
on-tributions are negle
ted, therefore, only the axial 
urrent operator matrix elementbetween the 3S1 initial state and the 4He �nal state needs to be 
onsidered. Thenon-relativisti
 one-body axial 
urrent operator has been dis
ussed in Chapter 4(see Eq. (137)), and, in its q=0 limit, is known as Gamow-Teller (GT) opera-tor. If the 4He wave fun
tion were to 
onsist of a symmetri
 S-state term only,namely 	4 = �4(S) det[p "1; p #2; n "3; n #4℄, then it would be an eigenfun
tion ofthe GT operator. Of 
ourse, tensor 
omponents in the nu
lear intera
tions gen-erate signi�
ant D-state admixtures, that partially spoil this eigenstate property.To the extent that this property is approximately satis�ed, though, the matrixelement of the GT operator between the 3S1 p 3He and 4He states vanishes due



CHAPTER 7. THE HEP REACTION 89to orthogonality between the initial and �nal states. Therefore, this transitionwhi
h is expe
ted to give the leading 
ontribution, is instead suppressed. Thus,to obtain a reliable estimate, one needs: (i) an a

urate des
ription of the small
omponents of the 3He and 4He wave fun
tions, in parti
ular the D-state admix-tures; (ii) in
lusion in the model for the axial 
urrent operator of both relativisti

orre
tions and many-body 
ontributions; (iii) in
lusion in the p 3He initial stateof all L = 0 and L = 1 
apture 
hannels. These are in fa
t the main features ofthe 
al
ulation presented here. In Se
tion 7.1 we de�ne the astrophysi
al S-fa
torand the 
ross se
tion of the hep rea
tion, while in Se
tion 7.2 we give some detailsof the 
al
ulation. Finally, in Se
tion 7.3 we present and dis
uss our results.7.1 The hep Cross Se
tion and Astrophysi
al S-fa
torThe astrophysi
al S-fa
tor at 
enter-of-mass (
.m.) energy E is de�ned asS(E) = E �(E) e2� � ; (232)where �(E) is the hep 
ross se
tion and � has been given in Eq. (219). The terme2� � is the inverse of the so-
alled Gamow penetration fa
tor, proportional tothe probability that the proton and 3He moving with relative velo
ity vrel, willpenetrate their ele
trostati
 repulsion. The de�nition above fa
tors out the strongenergy-dependent terms of �(E), so that S(E) is weakly dependent on E. The
.m. energies of interest involved in the p 3He weak 
apture rea
tion, are of theorder of 10 keV: the energy at whi
h the rea
tion is most probable to o

ur, knownas the Gamow-peak energy, is in fa
t 10.7 keV.In this Se
tion we sket
h the derivation of the 
ross se
tion �(E) for the heprea
tion. We pro
eed in three steps: in Subse
tion 7.1.1 we de�ne the transitionamplitude of the pro
ess, performing a partial-wave expansion of the p 3He initials
attering state, similar to what was done in Se
tion 6.1; in Subse
tion 7.1.2we dis
uss the multipole de
omposition of the nu
lear weak 
harge and 
urrent



CHAPTER 7. THE HEP REACTION 90operators, and in Subse
tion 7.1.3 we give the �nal expression for the total 
rossse
tion �(E).7.1.1 The Transition AmplitudeThe 
apture pro
ess 3He(p,e+�e)4He is indu
ed by the weak intera
tion Hamilto-nian [14, 93℄ HW = GVp2 Z dx e�i(pe+p�)�x l� j�(x) ; (233)where GV is the Fermi 
oupling 
onstant (GV=1.14939 10�5 GeV�2 [115℄), l� isthe leptoni
 weak 
urrentl� = u�
�(1� 
5)ve � ( l0;�l) ; (234)and j�(x) is the hadroni
 weak 
urrent density. The positron and (ele
tron)neutrino momenta and spinors are denoted, respe
tively, by pe and p�, and veand u�. The Bjorken and Drell [66℄ 
onventions are used for the metri
 tensorg�� and 
-matri
es; however, the spinors are normalized as vyeve = uy�u� = 1. Therea
tion and its kinemati
 are des
ribed s
hemati
ally in Fig. 26.
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hemati
 representation of the hep rea
tion.



CHAPTER 7. THE HEP REACTION 91The transition amplitude in the 
.m. frame is then given byhf jHW jii = GVp2 l�h�q; 4Hejjy�(q)jp; p 3Hei ; (235)where q = pe + p�, jp; p 3Hei and j � q; 4Hei represent the p 3He s
attering statewith relative momentum p and 4He bound state re
oiling with momentum �q,respe
tively, and j�(q) = Z dx eiq�x j�(x) � (�(q); j(q)) : (236)The dependen
e of the amplitude upon the spin-proje
tions of the proton and 3Heis understood. Sin
e the energies of interest are of the order of 10 keV, it is usefulto perform a partial-wave expansion of the p 3He s
attering wave fun
tion	(+)p;s1s3 = p4� XLSJJzp2L + 1 iLh12s1; 12s3jSJzihSJz; L0jJJzi	LSJJz1+3 ; (237)with 	LSJJz1+3 = ei�L XL0S0[1� iRJ ℄�1LS;L0S0	L0S0JJz1+3 ; (238)where s1 and s3 are the proton and 3He spin proje
tions, L, S, and J are therelative orbital angular momentum, 
hannel spin (S=0,1), and total angular mo-mentum (J = L+S), respe
tively, RJ is the R-matrix in 
hannel J , and �L is theCoulomb phase shift, as de�ned in Eq. (218). Note that 	(+) has been 
onstru
tedto satisfy outgoing wave boundary 
onditions, and that the spin quantization axishas been 
hosen to lie along p̂, whi
h de�nes the z-axis. The s
attering wave fun
-tion 	LSJJz1+3 as well as the 4He wave fun
tion 	4 have been dis
ussed in Chapter 3.Introdu
ing the expansion of Eqs. (237) and (238) in Eq. (235), we obtain:hf jHW jii = GVp2p4� XLSJJzp2L+ 1 iLh12s1; 12s3jSJzihSJz; L0jJJzi� "l0h	4j�y(q)j	LSJJz1+3 i �X�=0;�1 l�h	4jê�q� � jy(q)j	LSJJz1+3 i# ; (239)



CHAPTER 7. THE HEP REACTION 92where, with the future aim of a multipole de
omposition of the weak transitionoperators, the lepton ve
tor l has been expanded asl = X�=0;�1 l�ê�q� ; (240)with l� = êq� � l ; and êq0 � êq3 ; (241)êq�1 � � 1p2(êq1 � i êq2) : (242)The orthonormal basis êq1, êq2, êq3 is de�ned by êq3 = q̂, êq2 = p � q=jp � qj,êq1 = êq2 � êq3, and is shown in Fig. 26.7.1.2 The Multipole ExpansionStandard te
hniques [93℄ 
an now be used to perform the multipole expansion ofthe weak 
harge and 
urrent matrix elements o

urring in Eq. (239). In fa
t, thepro
edure is quite similar to the one dis
ussed in Se
tion 5.2, for the ele
tromag-neti
 
ase. Two main di�eren
es need, however, to be taken into a

ount. Firstly,the spin quantization axis is here along p̂ rather than along q̂. Se
ondly, andmost importantly, the longitudinal 
omponent of the weak 
urrent operator hasto be treated expli
itly, sin
e its axial-ve
tor part is not 
onserved. This leadsto the introdu
tion of a fourth multipole operator, whi
h we will refer to as thelongitudinal (L) multipole (its de�nition is given below).To address these 
ompli
ations, we �rst express the states quantized along p̂as linear 
ombinations of those quantized along q̂, using Eq. (170). For ease ofpresentation, we de�ne here � and � the angles whi
h spe
ify the dire
tion q̂ (seeFig. 26). Then, using the transformation properties under rotations of irredu
ibletensor operators, we 
an obtain the following expressions for the matrix elementsof 
harge and 
urrent operators:h	4 j �y(q) j	LSJJz1+3 i = p4�(�i)J(�)J�JzDJ�Jz;0(��;��; �) CLSJJ (q) ; (243)h	4 j ê�q0 � jy(q) j	LSJJz1+3 i = p4�(�i)J(�)J�JzDJ�Jz ;0(��;��; �) LLSJJ (q) ; (244)



CHAPTER 7. THE HEP REACTION 93h	4 j ê�q� � jy(q) j	LSJJz1+3 i = � p2�(�i)J(�)J�JzDJ�Jz;��(��;��; �)� h�MLSJJ (q) + ELSJJ (q)i : (245)Here � = �1, and CLSJJ , LLSJJ , ELSJJ and MLSJJ denote the redu
ed matrix ele-ments of the Coulomb (C), longitudinal (L), transverse ele
tri
 (E) and transversemagneti
 (M) multipole operators, following the same notation introdu
ed in Se
-tion 6.1. The expli
it expressions for the C, E and M multipole operators havebeen given in Eqs. (164){(166), while the longitudinal multipole is de�ned as [93℄Lllz(q) = iq Z dx j(x) � rjl(qx)Yllz(x̂) ; (246)where j(x) is the nu
lear 
urrent density and jl(qx) are spheri
al Bessel fun
tions.Finally, it is useful to 
onsider the transformation properties under parity ofthe multipole operators. The weak 
harge/
urrent operators have 
omponentsof both s
alar/polar-ve
tor (V) and pseudos
alar/axial-ve
tor (A) 
hara
ter, andhen
e Tllz = Tllz(V) + Tllz(A) ; (247)where Tllz is any of the multipole operators above. Obviously, the parity of lth-poleV-operators is opposite of that of lth-pole A-operators. The parity of Coulomb,longitudinal, and ele
tri
 lth-pole V-operators is (�)l, while that of magneti
lth-pole V-operators is (�)l+1, in analogy to the 
orresponding ele
tromagneti
multipoles (see Se
tion 5.1).7.1.3 The Cross Se
tionThe 
ross se
tion for the 3He(p,e+�e)4He rea
tion at a 
.m. energy E is given by�(E) = Z 2� Æ  �m + E � q22m4 � Ee � E�! 1vrel� 14 Xses� Xs1s3 jhf jHW j iij2 dpe(2�)3 dp�(2�)3 ; (248)where �m = m +m3 �m4 = 19.287 MeV (m, m3 and m4 are, respe
tively, theproton, the 3He and the 4He rest masses), and vrel is the p 3He relative velo
ity,



CHAPTER 7. THE HEP REACTION 94vrel = p=�, � being the redu
ed mass, � = mm3=(m + m3). It is 
onvenient towrite: 14 Xses� Xs1s3 jhf jHW j iij2 = (2�)2 G2V L�� N�� ; (249)where the lepton tensor L�� is de�ned asL�� � 12 Xses� l�l� � = 12tr�
�(1� 
5)( 6 pe �me)2Ee 
� (1� 
5) 6 p�2E� �= v�e v�� + v��v�e � g��ve � v� + i �����ve;�v�;� ; (250)with �0123 = �1, v�e = p�e=Ee and v�� = p��=E� are the lepton four-velo
ities. Thenu
lear tensor N�� is de�ned asN�� � Xs1s3W �(q; s1s3)W ��(q; s1s3) ; (251)where W �=0(q; s1s3) = XLSJXLSJ0 (q̂; s1s3)CLSJJ (q) ; (252)W �=3(q; s1s3) = XLSJXLSJ0 (q̂; s1s3)LLSJJ (q) ; (253)W �=�1(q; s1s3) = � 1p2 XLSJXLSJ�1 (q̂; s1s3) h�MLSJJ (q) + ELSJJ (q)i : (254)The dependen
e upon the dire
tion q̂ and proton and 3He spin proje
tions s1 ands3 is 
ontained in the fun
tions XLSJ� given byXLSJ� (q̂; s1s3) = XJz p2L+ 1 iL(�i)J(�)J�Jzh12s1; 12s3jSJzihSJz; L0jJJzi� DJ�Jz;�(��;��; �) ; (255)with � = 0;�1. Note that the Cartesian 
omponents of the lepton and nu
leartensors (�; � = 1; 2; 3) are relative to the orthonormal basis êq1, êq2, êq3, de�nedat the end of Se
tion 7.1.1.The expression for the nu
lear tensor 
an be further simpli�ed by making useof the redu
tion formulas for the produ
t of rotation matri
es [94℄. In fa
t, it 
aneasily be shown that the dependen
e of N�� upon the angle 
os � = p̂ � q̂ 
anbe expressed in terms of Legendre polynomials Pn(
os �) and asso
iated Legendre
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tions Pmn (
os �) with m = 1; 2. However, given the large number of 
hannelsin
luded in the present study (all L=0 and L=1 
apture states), the resultingequations for N�� are not parti
ularly illuminating. Indeed, the 
al
ulation of the
ross se
tion, Eq. (248), is 
arried out numeri
ally with the te
hniques dis
ussedin Subse
tion 7.2.2.A thorough dis
ussion of the 
ross se
tion expression of Eq. (248) and its long-wavelength-approximation has been given in Ref. [14℄. Here, we only remark thatthe long-wavelength-approximation for the 
ross se
tion, 
ommonly used in allprevious studies, leads to ina

urate results.7.2 Cal
ulationThe 
al
ulation of the p 3He weak 
apture 
ross se
tion pro
eeds in two steps: �rst,we evaluate, via Monte Carlo te
hniques, the weak 
harge and 
urrent operatormatrix elements, and by inverting Eqs. (243){(245), we de
ompose these in termsof the redu
ed matrix elements of the multipole operators. Se
ond, we evaluatethe 
ross se
tion by 
arrying out numeri
ally the integrations of Eq. (248). Thesetwo steps are dis
ussed in Subse
tions 7.2.1 and 7.2.2, respe
tively. The modelfor the weak 
harge and 
urrent operators has been des
ribed in Chapter 4.7.2.1 Monte Carlo Cal
ulation of Matrix ElementsIn a frame where the dire
tion of the momentum transfer q̂ also de�nes the quan-tization axis of the nu
lear spins, the matrix elements of the weak 
harge and
urrent operators have the multipole expansionh	4 j �y(q) j	LSJ;Jz=01+3 i = p4� iJCLSJJ (q) ; (256)h	4 j ê�q0 � jy(q) j	LSJ;Jz=01+3 i = p4� iJLLSJJ (q) ; (257)h	4 j ê�q� � jy(q) j	LSJ;Jz=�1+3 i = p2� iJ h�MLSJJ (q) + ELSJJ (q)i ; (258)with � = �1. The expressions above 
an easily be obtained from those inEqs. (243){(245), by setting �=�=0 and using DJJ 0z;Jz(0; 0; 0) = ÆJ 0z;Jz . The re-du
ed matrix elements of the multipole operators are then obtained inverting



CHAPTER 7. THE HEP REACTION 96Eqs. (256){(258). As an example, the redu
ed matrix element of the axial ele
tri
multipole involving a transition from the p 3He 3S1 state is simply given byE0111 (q; A) = � ip2� h	4 j ê�q� � jy(q; A) j	011;Jz=�1+3 i : (259)The problem is now redu
ed to evaluate matrix elements of the same typeas on the right-hand-side of Eq. (259). Similarly to the pro
edure des
ribed inSe
tion 5.2, we s
hemati
ally write these matrix elements ash	4;N+� jO j	1+3;N+�i[h	4;N+� j	4;N+�ih	1+3;N+� j	1+3;N+�i℄1=2 ; (260)where the initial and �nal states wave fun
tions 
ontain both nu
leon and �-isobardegrees of freedom and are obtained using the transition 
orrelation operatormethod (TCO) des
ribed in Subse
tion 4.1.5. When the full wave fun
tions areexpanded as in Eq. (190), the numerator of Eq. (260) 
an be expressed ash	4;N+� jO j	1+3;N+�i = h	4 jO(N only) j	1+3i + h	4 jO(�) j	1+3i ; (261)where the operator O(N only) denotes all one- and two-body 
ontributions to theweak 
harge or 
urrent operator O, involving only nu
leon degrees of freedom,while O(�) in
ludes terms that involve the �-isobar degrees of freedom. A di-agrammati
al illustration of the terms 
ontributing to O(�) is given in Fig. 27.Conne
ted three-body terms 
ontaining more than a single � isobar have beenignored, sin
e their 
ontributions are expe
ted to be negligible. Indeed, the 
on-tribution from diagram (d) of Fig. 27 has already been found numeri
ally verysmall.The two-body terms of Fig. 27 are expanded as operators a
ting on the nu
le-ons' 
oordinates with the same pro
edure des
ribed in Se
tion 5.2 for the termsof Fig. 11. The three- and four-body terms instead have been 
al
ulated retainingthe expli
it representation of S (Sy) as a 4 � 2 (2 � 4) matrix (see Se
tion 5.2),
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a) b) c) d)

h) i) j)FIG. 27: Diagrammati
 representation of the operators in
luded in O(�), due tothe one-body 
urrent and 
harge operators, to the transition 
orrelations UN� andU�� and the 
orresponding Hermitian 
onjugates. Thin, thi
k, dashed and 
ross-dashed lines denote, respe
tively, nu
leons, �-isobars, and transition 
orrelationsUBB0 and UBB0 y.and of � as a 4� 4 matrix � = 0BBBBBB� 3ê0 p6ê� 0 0�p6ê+ ê0 p8ê� 00 �p8ê+ �ê0 p6ê�0 0 �p6ê+ �3ê0
1CCCCCCA ;

where ê� = �(x̂ � iŷ)=p2, ê0 = ẑ, and ê�� = (�)�ê��. The result of terms su
has (f)=UN�ij yO(1)j (� ! �)U�Njk on the nu
leon-only state j	i has been derivedby �rst operating with U�Njk , then with O(1)j (� ! �), and �nally with UN�ij y.The terms asso
iated with diagrams (f), (g) and (j) were negle
ted in previous
al
ulations [25℄.The matrix elements in Eq. (261) are 
omputed, without any approximation,by Monte Carlo integrations, a

ording to the Metropolis et al. algorithm [95℄



CHAPTER 7. THE HEP REACTION 98as des
ribed in Se
tion 5.2. It has been found however more 
onvenient to use aprobability density W (R) proportional toW (R) / qh	y4(R)	4(R)i ; (262)where the notation h� � �i implies sums over the spin-isospin states of the 4He wavefun
tion. Typi
ally, 200,000 
on�gurations are enough to a
hieve a relative error� 5 % on the total S-fa
tor.We �nally dis
uss here an important aspe
t of the model for the axial transitionoperators. As already pointed out in Subse
tion 4.2.5, in the model for the N�and �� weak axial 
harge and 
urrent operators, the axial 
oupling 
onstantsg�A and gA, see Eqs. (150){(153), are not well known. In the quark-model, theyare related to the axial 
oupling 
onstant of the nu
leon by the relations g�A =(6p2=5)gA and gA = (1=5)gA. However, given the un
ertainties inherent to quark-model predi
tions, a more reliable estimate for g�A is obtained by determining itsvalue phenomenologi
ally in the following way. It is well established by now [12℄that the one-body axial 
urrent of Eq. (137) leads to a ' 4 % underpredi
tion ofthe measured Gamow-Teller matrix element in tritium �-de
ay, see Table X. Sin
ethe 
ontributions of �! � axial 
urrents (as well as those due to the two-bodyoperators of Subse
tion 4.2.3) are found to be numeri
ally very small, as 
an beseen again from Table X, this 4 % dis
repan
y 
an then be used to determine g�A.Obviously, this pro
edure produ
es di�erent values for g�A depending on how the�-isobar degrees of freedom are treated. These values are listed in Table XI for
omparison. The g�A value that is determined in the 
ontext of a TCO 
al
ulationbased on the AV28Q intera
tion, is about 40 % larger than the naive quark-modelestimate. However, when perturbation theory is used for the treatment of the �isobars, the g�A value required to reprodu
e the Gamow-Teller matrix element oftritium �-de
ay is mu
h smaller than the TCO estimate.7.2.2 Cal
ulation of the Cross Se
tionOn
e the redu
ed matrix elements (RMEs) in Eqs. (256){(258) have been ob-tained, the 
al
ulation of the 
ross se
tion �(E) is redu
ed to performing the
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TABLE X: Contributions to the Gamow-Teller (GT) matrix element of tritium�-de
ay, obtained with the PHH trinu
leon wave fun
tions 
orresponding to theAV18/UIX Hamiltonian model. The rows labelled \one-body NR"and \one-bodyRC"list the 
ontributions asso
iated with the single-nu
leon axial 
urrent opera-tors of Eq. (137) and Eq. (138), respe
tively, while the row labelled \mesoni
"liststhe sum of the 
ontributions due to the �-, �-, and ��-ex
hange axial 
urrentoperators of Eqs. (142){(144). The rows labelled \�-g�A"and \�-gA"list the 
on-tributions arising from the one-body �-
urrents of Eqs. (150) and (151), respe
-tively. The row labelled \�-renormalization"lists the 
ontributions asso
iatedwith renormalization 
orre
tions to the \nu
leoni
"matrix element of j(1)i (q; A),due to the presen
e of �-admixtures in the wave fun
tions. The 
umulative resultreprodu
es the \experimental value"0.957 for the GT matrix element [12℄, on
e the
hange in the wave fun
tions normalization due to the presen
e of �-
omponentsis taken into a

ount. GT matrix elementone-body NR 0.9218one-body RC {0.0084mesoni
 0.0050�-g�A 0.0509�-gA 0.0028�-renormalization 0.0074
TABLE XI: The values of the N!� axial 
oupling 
onstant g�A in units of gA,when the �-isobar degrees of freedom are treated in perturbation theory (PT), orin the 
ontext of a TCO 
al
ulation based on the AV28Q intera
tion. The purelynu
leoni
 CHH wave fun
tions 
orrespond to the AV18/UIX Hamiltonian model.�-isobar treatment g�A=gAPT 1.224TCO 2.868



CHAPTER 7. THE HEP REACTION 100integrations over the ele
tron and neutrino momenta in Eq. (248) numeri
ally.We write�(E) = 1(2 �)2 G2Vvrel Z p�e0 dpe p2e Z 1�1 dxe Z 1�1 dx� Z 2�0 d� p2� f�1 L��N�� ; (263)where one of the azimuthal integrations has been 
arried out, sin
e the integrandonly depends on the di�eren
e � = �e��� . The Æ-fun
tion o

urring in Eq. (248)has also been integrated out resulting in the fa
tor f�1, withf = ����1 + pe xe�m4 + p�m4 ���� : (264)The magnitude of the neutrino momentum is �xed by energy 
onservation to bep� = 2�1 + pe xe�=m4 +q(1 + pe xe�=m4)2 + 2�=m4 ; (265)where � = �m + E � Ee � p2e=2m4. The variable xe� is de�ned asxe� = p̂e � p̂� = xe x� +q1� x2eq1� x2� 
os � ; (266)where xe = 
os �e and x� = 
os �� . Finally, the integration over the magnitude ofthe ele
tron momentum extends from zero up top�e = s�qm24 +m2e + 2m4 (�m + E) � m24�2 �m2e : (267)The lepton tensor is expli
itly given by Eq. (250), while the nu
lear tensor is
onstru
ted using Eqs. (251){(255). Computer 
odes have been developed to
al
ulate the required rotation matri
es 
orresponding to the q̂-dire
tion (�; �)with 
os � = ẑ � q̂ = ẑ � (pe + p�)jpe + p� j= pe xe + p� x�qp2e + p2� + 2 pe p� xe� : (268)Finally, note that the nu
lear tensor requires the values of the RMEs at themomentum transfer q, with q = qp2e + p2� + 2 pe p� xe�. To make the dependen
e



CHAPTER 7. THE HEP REACTION 101upon q of the RMEs expli
it, we have performed an expansion for q ! 0 of themultipole operators given in Eqs. (164){(166) and (246). Given the low momen-tum transfers involved, q � 20 MeV/
, the leading and next-to-leading order termsare suÆ
ient in the expansion. The multipoles are therefore expli
itly written asTLSJJ (q) = qm (tLSJ0 + tLSJ2 q2) ; (269)where m = J for the Coulomb CJ and magneti
 MJ multipole operators, andm = J � 1 for the ele
tri
 EJ and longitudinal LJ ones. However, when J = 0,the leading-order term of the expansion of the longitudinal operator L0 is of orderof q [93℄. Note that the long-wavelength-approximation 
orresponds, typi
ally, toretaining only the t0 term.A moderate number of Gauss points (of the order of 10) for ea
h of the integra-tions in Eq. (263) is suÆ
ient to a
hieve 
onvergen
e within better than one partin 103. The 
omputer program has been su

essfully tested by reprodu
ing theresult obtained analyti
ally, when only the 3S1 E1(A) and L1(A) and 3P0 C0(A)RMEs are retained.7.3 ResultsIn this Se
tion we present our main results, for a more detailed dis
ussion, seeRef. [14℄. In Subse
tion 7.3.1 we give the results of the astrophysi
al S-fa
tor, atthree di�erent energies. In Subse
tion 7.3.2 we dis
uss the RME values for twoof the initial 
apture 
hannels, the 3S1 and 3P0. The former 
ase is 
onsideredto 
ompare with previous 
al
ulations [25, 51℄, while the latter is dis
ussed asan example of one of the P-wave 
ontributions. Finally, in Subse
tion 7.3.3, we
onsider the impli
ations to the SK neutrino spe
trum.7.3.1 Results for the S-fa
torOur results for the astrophysi
al S-fa
tor, 
al
ulated using CHH wave fun
tionswith the AV18/UIX Hamiltonian model, at three di�erent 
.m. energies, are given



CHAPTER 7. THE HEP REACTION 102in Table XII. By inspe
tion of the table, we note that: (i) the energy dependen
eis rather weak: the value at 10 keV is only about 4 % larger than that at 0 keV;(ii) the P-wave 
apture states are found to be important, 
ontributing about 40% of the 
al
ulated S-fa
tor. However, the 
ontributions from D-wave 
hannelsare expe
ted to be very small. It has been expli
itly veri�ed that they are indeedsmall in 3D1 
apture. (iii) The many-body axial 
urrents play a 
ru
ial role in the(dominant) 3S1 
apture, where they redu
e the S-fa
tor by more than a fa
tor offour.TABLE XII: The hep S-fa
tor, in units of 10�20 keV b, 
al
ulated with CHHwave fun
tions 
orresponding to the AV18/UIX Hamiltonian model, at p 3He 
.m.energies E=0, 5, and 10 keV. The rows labelled \one-body"and \full"list the
ontributions obtained by retaining the one-body only and both one- and many-body terms in the nu
lear weak 
urrent. The 
ontributions due the 3S1 
hannelonly and all S- and P-wave 
hannels are listed separately.E=0 keV E=5 keV E=10 keV3S1 S+P 3S1 S+P 3S1 S+Pone-body 26.4 29.0 25.9 28.7 26.2 29.3full 6.38 9.64 6.20 9.70 6.36 10.1The di�erent 
ontributions from the S- and P-wave 
apture 
hannels to thezero energy S-fa
tor are listed in Table XIII. Note that the sum of the 
hannel
ontributions is a few % smaller than the total result reported at the bottomof the table, due to the presen
e of interferen
e terms among multipole opera-tors 
onne
ting di�erent 
apture 
hannels [14℄. The results obtained using thetwo-nu
leon AV18 and the older two- and three-nu
leon AV14/UVIII intera
tionmodels are also listed. The dominant 
ontribution to the S-fa
tor is obtained fromthe 3S1 
apture 
hannel. The 3P0 
apture 
hannel 
ontribution is not the largestP-wave 
ontribution, as instead expe
ted in previous studies [21℄, although it isthe only one surviving at q=0. A detailed analysis of the 3S1 and 3P0 RMEs isgiven in the next Subse
tion.By 
omparing the AV18 and AV18/UIX results, we note that in
lusion of the



CHAPTER 7. THE HEP REACTION 103TABLE XIII: Contributions of the S- and P-wave 
apture 
hannels to the hepS-fa
tor at zero p 3He 
.m. energy in 10�20 keV b. The results 
orrespond to theAV18/UIX, AV18 and AV14/UVIII Hamiltonian models.AV18/UIX AV18 AV14/UVIII1S0 0.02 0.01 0.013S1 6.38 7.69 6.603P0 0.82 0.89 0.791P1 1.00 1.14 1.053P1 0.30 0.52 0.383P2 0.97 1.78 1.24TOTAL 9.64 12.1 10.1
three-nu
leon intera
tion redu
es the total S-fa
tor by about 20 %. This de
reaseis mostly in the 3S1 
ontribution, and 
an be tra
ed ba
k to a 
orresponding redu
-tion in the magnitude of the one-body axial 
urrent matrix elements. The latterare sensitive to the triplet s
attering length, for whi
h the AV18 and AV18/UIXmodels predi
t, respe
tively, 10.0 fm and 9.13 fm (see Table IV). This 20 % di�er-en
e in the total S-fa
tor values for AV18 and AV18/UIX emphasizes the need forperforming the 
al
ulation using a Hamiltonian model that reprodu
es the bind-ing energies and low-energy s
attering parameters for the three- and four-nu
leonsystems. This is true for the AV18/UIX model, but not for the AV18 model.The di�erent 
ontributions to the astrophysi
al S-fa
tor when the olderAV14/UVIII potential model is used are given in the last 
olumn of Table XIII.By 
omparing these results with the ones obtained with the AV18/UIX, we ob-serve that both the S- and P-wave 
ontributions are not signi�
antly 
hanged; inparti
ular, the 3S1 
apture S-fa
tor values di�er for only about 3 %. This is dueto our pro
edure of 
onstraining the model dependent two-body axial 
urrents by�tting the Gamow-Teller matrix element of tritium �-de
ay, as dis
ussed at theend of Subse
tion 7.2.1. Note that the AV14/UVIII Hamiltonian also reprodu
esthe low-energy properties for the three- and four-nu
leon systems.
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hief 
on
lusion of this Subse
tion is that our best estimate for the S-fa
tor at 10 keV, 
lose to the Gamow-peak energy, is 10.1 �10�20 keV b. Thisvalue is ' 4.5 times larger than the value adopted in SSM, based on Ref. [25℄, of2.3 �10�20 keV b. It is therefore important to point out the di�eren
es betweenthe present and the previous study of Ref. [25℄: (i) we have in
luded all P-wave
ontributions; (ii) we have retained the full dependen
e on the momentum transferq; (iii) we have used the CHH method to des
ribe the initial and �nal state wavefun
tions, 
orresponding to the latest generation of realisti
 intera
tions. TheCHH method is known to be more a

urate than the variational Monte Carlo(VMC) te
hnique used in Ref. [25℄, and it better des
ribes the small 
omponentsof the wave fun
tion to whi
h the GT operator is most sensitive. (iv) We havein
luded the 1=m2 relativisti
 
orre
tions in the one-body axial 
urrent operator.In 3S1 
apture, for example, these terms in
rease by 25 % the L1 and E1 matrixelements 
al
ulated with the GT operator (see below).7.3.2 The 3S1 and 3P0 CapturesThe 3S1 
apture is indu
ed by the weak axial 
harge and 
urrent, and weak ve
tor
urrent operators via the multipoles C1(A), L1(A), E1(A), and M1(V), while the3P0 
apture is indu
ed by the weak axial 
harge and the longitudinal 
omponent ofthe weak axial 
urrent operators via the multipoles C0(A) and L0(A), respe
tively.The 
umulative 
ontributions to the RMEs of these multipoles obtained withAV18/UIX CHH wave fun
tions, at zero 
.m. energy and at a lepton momentumtransfer q=19.2 MeV/
 are listed in Tables XIV and XVI. Note that the RMEslisted in all tables are related to those de�ned in Eqs. (243){(245) viaTJLSJ = r vrel4�� [e2�� � 1℄TLSJJ ; (270)whi
h 
an be shown to remain �nite in the limit vrel ! 0, 
orresponding to zeroenergy. The 
umulative nu
leoni
 
ontributions are normalized as[one�body+mesoni
℄ = h	4jO(N only)j	1+3i[h	4j	4ih	1+3j	1+3i℄1=2 : (271)
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ontributions are added to the 
umulative sum, thenormalization 
hanges to[one�body+mesoni
+�℄ = h	4;N+�jO(N only) +O(�)j	1+3;N+�i[h	4;N+�j	4;N+�ih	1+3;N+�j	1+3;N+�i℄1=2 : (272)The normalization of the initial s
attering state 	1+3 is the same as that of 3He,up to 
orre
tions of order (volume)�1. The three- and four-body normalizationratios h	N+�j	N+�i=h	j	i have been given in Chapter 4, Table V.TABLE XIV: Cumulative 
ontributions to the redu
ed matrix elements (RMEs)C1(q; A), L1(q; A), E1(q; A) and M1(q; V) in 3S1 
apture at zero p 3He 
.m. en-ergy. The momentum transfer q is 19.2 MeV/
, and the results 
orrespond tothe AV18/UIX Hamiltonian model. The row labelled \one-body"lists the 
on-tributions asso
iated with the operators in Eq. (135) for the weak axial 
harge�(A), Eq. (136) for the weak axial 
urrent j(A), and Eq. (133) for the weak ve
tor
urrent j(V); the row labelled \mesoni
"lists the results obtained by in
luding, inaddition, the 
ontributions asso
iated with the operators in Eqs. (145){(147) for�(A), Eqs. (142){(144) for j(A), and Eqs. (88){(89) for j(V), with the substitu-tions �i;z ! �i;� and (� i�� j)z ! (� i�� j)� (see Subse
tion 4.2.2); �nally, the rowlabelled \�"lists the results obtained by also in
luding the 
ontributions of theoperators in Eqs. (152){(153) for �(A), Eqs. (150){(151) for j(A), and Eqs. (154){(155) for j(V). The � 
ontributions in both �(A) and j(A) are 
al
ulated withthe TCO method, and take into a

ount the 
hange in normalization of the wavefun
tions due to the presen
e of �-
omponents. Those in j(V) are 
al
ulated inperturbation theory. Note that the RMEs are purely imaginary and in fm3=2 units.C1(q; A) L1(q; A) E1(q; A) M1(q; V)one-body 0:147� 10�1 �0:730� 10�1 �0:106 0:333� 10�2mesoni
 0:156� 10�1 �0:679� 10�1 �0:984� 10�1 �0:263� 10�2� 0:155� 10�1 �0:293� 10�1 �0:440� 10�1 �0:484� 10�2Inspe
tion of the 3S1 
apture RMEs of Table XIV, shows that: (i) the C1(A)RMEs are not small, 
ompared to the dominant L1(A) and E1(A) terms. (ii)There is destru
tive interferen
e between the one- and many-body axial 
urrent
ontributions to the L1(A) and E1(A) RMEs, as it was �rst obtained in Ref. [51℄,using VMC wave fun
tions. (iii) Among the many-body axial 
urrent 
ontribu-tions, those asso
iated with �-ex
itation are the largest.
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ontributions, at momentum transfers q=0 and 19.2MeV/
, to the redu
ed matrix elements (RMEs) L1(q; A) and E1(q; A) of the weakaxial 
urrent in 3S1 
apture at zero p 3He 
.m. energy. The results 
orrespond tothe AV18/UIX Hamiltonian model. Notations as in Table XIV for \one-body",\mesoni
"and \�-TCO", whi
h there was labelled \�". Finally, the row labelled\�-PT"lists the results obtained by in
luding the 
ontributions of the operator inEq. (150), 
al
ulated in perturbation theory (PT). The �-TCO results also takeinto a

ount the 
hange in normalization of the wave fun
tions due to the presen
eof �-
omponents. Note that the RMEs are purely imaginary and in fm3=2 units.L1(q; A) E1(q; A)q=0 MeV/
 q=19.2 MeV/
 q=0 MeV/
 q=19.2 MeV/
one-body �0:880� 10�1 �0:730� 10�1 {0.125 {0.106mesoni
 �0:829� 10�1 �0:679� 10�1 {0.117 �0:984� 10�1�-TCO �0:440� 10�1 �0:293� 10�1 �0:625� 10�1 �0:440� 10�1�-PT �0:447� 10�1 �0:298� 10�1 �0:631� 10�1 �0:443� 10�1
To study the q-dependen
e of the dominant L1(A) and E1(A) multipoles, wehave listed in Table XV the 
umulative 
ontributions to the multipoles RMEs attwo di�erent momentum transfers q=0 and q=19.2 MeV/
. The q-dependen
e isimportant only for the one-body 
ontribution. In fa
t, the di�eren
e between theq=0 and q=19.2 MeV/
 RMEs is 
onstant for all the 
umulative 
ontributions(0.015 and 0.019 for L1(A) and E1(A), respe
tively). The last row of Table XV,labelled \�{PT", lists the RMEs obtained using perturbation theory in the treat-ment of the �-isobar degrees of freedom (see Subse
tion 4.1.5). Note that in this
ase, the results have been normalized a

ording to Eq. (271). Comparing theseRMEs with the ones obtained in the TCO 
ontext (row labelled \�{TCO"), wesee a di�eren
e of only 1{2 %. This is due to the fa
t that in both 
ases the N�axial 
oupling 
onstant g�A is obtained by �tting the Gamow-Teller matrix elementin tritium �-de
ay, as dis
ussed in Se
tion 7.2. The dependen
e of our 
al
ulationon the �-isobar degrees of freedom treatment is therefore strongly redu
ed.The 3P0 
apture RMEs are presented in Table XVI. We �rst note that the 3P0
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t not small: both the C0(A) and L0(A) RMEs are of the sameorder of magnitude as the E1(A) and L1(A) RMEs in 3S1 
apture. Furthermore,there is 
onstru
tive interferen
e between the one- and many-body 
ontributionsto both the axial 
harge and 
urrent operators. In parti
ular, the two-body axial
harge operators of Subse
tion 4.2.4, among whi
h the pion-ex
hange term isdominant, give a ' 20 % 
orre
tion to the one-body 
ontribution in the C0(A)RME. The L0(A) RME is about 40 % of, and has the same sign as, the C0(A)RME. This positive relative sign produ
es a destru
tive interferen
e between theseRMEs in the 
ross se
tion, substantially redu
ing the 3P0 overall 
ontribution tothe S-fa
tor [14℄. The C0(A) and L0(A) RMEs are in fa
t expe
ted to be of thesame sign, as dis
ussed in Ref. [14℄.TABLE XVI: Cumulative 
ontributions to the redu
ed matrix elements (RMEs)C0(q; A) and L0(q; A) in 3P0 
apture at zero p 3He 
.m. energy. The momentumtransfer q is 19.2 MeV/
, and the results 
orrespond to the AV18/UIX Hamiltonianmodel. Notations as in Table XIV. Note that the RMEs are purely imaginaryand in fm3=2 units. C0(q; A) L0(q; A)one-body 0:371� 10�1 0:182� 10�1mesoni
 0:444� 10�1 0:183� 10�1� 0:459� 10�1 0:188� 10�1
7.3.3 Impli
ations for the Super-Kamiokande Solar Neu-trino Spe
trumThe Super-Kamiokande (SK) experiment dete
ts solar neutrinos by neutrino-ele
tron s
attering. It is sensitive, a

ording to the SSM (see Fig. 25), to thevery energeti
 neutrinos from the 8B weak de
ay (8B! 4He+ 4He+ e++ �e) andfrom the hep rea
tion. In the SSM the hep neutrinos 
ontribution is expe
ted tobe very small. However, due to a larger end-point energy respe
t to the 8B weakde
ay, the hep rea
tion is the only sour
e of solar neutrinos at energies larger than



CHAPTER 7. THE HEP REACTION 108' 15 MeV.The SK results are presented as ratio of the measured to the SSM predi
tedevents when no neutrino os
illations are in
luded, as fun
tion of the re
oil ele
tronenergy. Over most of the spe
trum, this ratio is 
onstant at ' 0:5 [23℄. At thehighest energies, however, there is an ex
ess of events relative to the 0:5�SSMpredi
tion. This is seen in Fig. 28 where the SK results from 825 days of dataa
quisition [23℄ are shown by the points (the error bars denote the 
ombinedstatisti
al and systemati
 error); the dotted line is the 0:5�SSM predi
tion.To study the e�e
ts of our new value for the S-fa
tor, 10.1 �10�20 keV b (seeTable XII) to the SK spe
trum, we introdu
e the ratio � of the hep 
ux to itsSSM value as � � SnewSSSM � Pos
 ; (273)where Pos
 is the observed suppression fa
tor due to neutrino os
illations. There-fore, if hep neutrino os
illations are ignored, then � = (10:1�10�20 keV b)=(2:3�10�20 keV b) = 4:4, while if the hep neutrinos are suppressed by ' 0:5, then� = 2:2. The long-dashed and solid lines in Fig. 28 indi
ate the e�e
t of thesetwo di�erent values of � on the ratio of the ele
tron spe
trum with both 8B andhep to that with only 8B (the SSM). Two other arbitrary values of � (10 and 20)are shown for 
omparison.From Fig. 28, we 
an 
on
lude that the enhan
ement of the S-fa
tor found inthis 
al
ulation, although large, is not enough to 
ompletely resolve the dis
rep-an
ies between the present SK results and the SSM predi
tions. However, thisa

urate 
al
ulation of the S-fa
tor, and the 
onsequent absolute predi
tion forthe hep neutrino 
ux, will allow mu
h greater dis
rimination among the proposedsolutions to this problem, based on di�erent solar neutrino os
illation s
enarios.
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FIG. 28: Ele
tron energy spe
trum for the ratio between the Super-Kamiokande825-days data and the expe
tation based on unos
illated 8B neutrinos [24℄. Thedata are taken from Ref. [23℄. The 5 
urves from the bottom to the top 
orrespondrespe
tively to no hep 
ontribution (dotted line), �=2.2, 4.4, 10, 20, with � de�nedin Eq. (273).



Chapter 8Con
lusionsIn the present thesis, we have reported on a

urate 
al
ulations for three nu
learpro
esses: elasti
 ele
tron-s
attering on 3H and 3He [13℄, 3He ele
trodisintegrationat threshold [15℄, and the hep rea
tion [14, 16℄. We have used a non-relativisti
approa
h, based on latest generation models for the nu
lear Hamiltonian andele
troweak 
urrents.For the �rst two pro
esses, we have 
ompared our predi
tions with the availableexperimental data. Generally, the 
al
ulated observables agree well with the mea-sured ones. It should be reemphasized that, in order to a
hieve su
h agreement,realisti
 models for both the nu
lear Hamiltonian and ele
tromagneti
 transitionoperators must be used. Indeed, the impulse approximation 
ompletely fails toreprodu
e the experimental results, and many-body 
ontributions to the ele
tro-magneti
 
harge and 
urrent operators need to be in
luded to a
hieve agreementwith the data.Some dis
repan
ies, however, still remain unresolved: the 3He magneti
 formfa
tor �rst zero o

urs at lower momentum transfer q than experimentally ob-served. Furthermore, the 3He longitudinal response fun
tion at high q seems tobe overpredi
ted by theory. These dis
repan
ies provide important motivationsto (i) look for improvements and re�nements to models of nu
lear intera
tionsand/or ele
troweak 
urrents, and (ii) perform more a

urate experiments in order110
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on�rm the existing data, some of whi
h have large errors. Indeed, new exper-imental proposals to investigate these dis
repan
ies are 
urrently under study atthe Thomas Je�erson National A

elerator Fa
ility [17℄.Finally, the hep rea
tion 
al
ulation provides an example of how our approa
h
an be applied to study rea
tions, whi
h o

ur in stellar interiors at very low en-ergies and have too small a 
ross se
tion to be measured experimentally. Some ofthese pro
esses are very important in determining solar fusion rates and primor-dial abundan
es of elements; the importan
e of a

urate theoreti
al predi
tions istherefore evident. A systemati
 study of ele
troweak 
apture rea
tions involvingnu
lei up to A � 8 will be the obje
t of future work.
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