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ABSTRACT

ELECTROWEAK STRUCTURE OF THREE-
AND FOUR-BODY NUCLEI

Laura Elisa Marcucci
Old Dominion University, 2002

Director: Dr. Rocco Schiavilla

This work reports results for (i) the elastic electromagnetic form factors of the trin-
ucleons; (ii) the nuclear response functions of interest in 3ﬁe(€, e') experiments, at
excitation energies below the deuteron breakup threshold; (iii) the astrophysical
S-factor for proton weak capture on *He (the hep reaction). The initial and final
state wave functions are calculated using the correlated hyperspherical harmonics
method, from a realistic Hamiltonian consisting of the Argonne vig two-nucleon
and Urbana IX three-nucleon interactions. The nuclear electroweak charge and
current operators include one- and many-body components. The predicted mag-
netic form factor of 3H, charge form factors and static properties of both 3H and
3He, are in satisfactory agreement with the experimental data. However, the po-
sition of the zero in the magnetic form factor of *He is underpredicted by theory.
The calculated nuclear response functions in *He electrodisintegration at thresh-
old are in good agreement with the experimental data, which have however rather
large errors. Finally, the astrophysical S-factor for the hep reaction is predicted
~ 4.5 larger than the value adopted in the standard-solar-model, with important
consequences for the solar neutrino spectrum measured by the Super-Kamiokande

collaboration.



Acknowledgements

I am grateful to many people who have supported and helped me during these four
years of graduate studies. I hope I will mention all of them, without forgetting
anybody.

First of all, I would like to thank my advisor Rocco Schiavilla, who has helped
me during this work in many different ways, with useful suggestions and advice.
His experience and understanding in the field of nuclear physics have given me
fundamental insights in all my research projects. I would like to thank also Rocco
and especially his wife Lynn for helping me to get settled here in Virginia, when I
had just arrived and could barely speak and understand English. I am particularly
thankful to Lynn for her constant support during all these years.

Great support has come to me also from the Physics Department of Old Do-
minion University. [ would like to thank everybody for it. In particular, I would
like to thank my committee members, Mark Havey, Sebastian Kuhn, Anatoly
Radyushkin and Nancy Xu, for all their suggestions during this work. I am also
very grateful to Andreas Klein for teaching me how to use the LSF system and
for being always ready to help and solve any of the problems I experienced while
running my codes. Without his help, my last research project would not yet be
completed.

In these years, I spent most of my time at Jefferson Lab: I would like to thank
the Theory Group, for giving me hospitality and allowing me to use permanently
one of the offices. Furthermore, in these years everybody has always been ready
to help, for any question or problem I had; in particular, I am very grateful to

Jiri Adam and Jun Forest, my patient officemates, and Sabine Jeschonnek and

1



Rich Lebed. The possibility I had of interacting with the members of the Theory
Group, of listening to the talks they gave or organized, of meeting visitors of the
Lab and learning about physics not necessarily related to my particular field, but
still interesting and exciting, have been of great help in my education as a physics
researcher.

I would like to thank Sergio Rosati, Alejandro Kievsky, Michele Viviani and
the whole Nuclear Theory Group of the Pisa University. During these years,
their support has always been a reference point for me: the discussions on our
common projects, the sharing of Fortran codes, and the CPU time I could use
on Michele’s computer have been of great importance for me, enabling me to
complete this work. I am very grateful also to Dan-Olof Riska and John Beacom
for the research projects we completed together, and for sharing with me their
ideas and knowledge.

I would like to thank all my friends, which have supported and helped me
in each moment, through all these years. Most of all, thanks to my “Rumanian
sister” Luminita Todor and her wonderful family, which has always been there
whenever I needed. Her support, from the very first moment we met in Jefferson
Lab, through the classes we took together, till these very last stressful months, has
been immeasurable. I would like to thank also Francesca and Dick McCleary, for
supporting me in every moment even from such a long distance, after they moved
to London. Thanks also to my friends Rama Balasubramanian, Jeff Waller, Gilles
Quemener, Sheila Norman and Moira Piccirilli.

As last, but also as most important, I would like to thank my family and my
fiance Michael. My family has always supported me, being at my side even if in
fact living so far from me. During these four years, I have always known that I
could count on them for any help I might have needed. Their annual visits made
much more tolerable the big distance that was between us. Finally, I give my most
grateful thanks to Michael, whose love, patience, understanding and support have
made my life much easier and much more beautiful. I would have never been able

to conclude this work without his secure presence at my side.



Table of Contents

List of Tables X
List of Figures xiv
1 Introduction 1
2 The Nuclear Interaction 6
2.1 Two-Nucleon Interactions . . . .. ... ... ... ........ 6
2.2 Three-Nucleon Interactions . . . . . . .. ... ... ... ..... 10
3 Bound- and Scattering-State Wave Functions 12
3.1 The Bound-State Wave Functions . . . . . . ... ... ... ... 13
3.1.1 The Three-Nucleon Wave Function . . . . ... ... ... 14
3.1.2  The *He Wave Function . . . ... ... ... ....... 16
3.2 The Scattering-State Wave Functions . . . . . . .. ... ... .. 20
3.2.1 The Method for Scattering-State Wave Functions . . . . . 21
3.2.2 Results for Three- and Four-Body Scattering Problems . . 22
4 The Nuclear Transition Operators 25
4.1 The Electromagnetic Transition Operators . . . . . .. ... ... 26
4.1.1 Nuclear Current and Charge Operators . . . . . . ... .. 26
4.1.2 The Two-Body Current Operators. . . . . . .. ... ... 28

4.1.3 The Three-Body Exchange Current Associated with S-wave
Pion Rescattering . . . . . . . ... ... ... ... ... 35
4.1.4 Two-Body Charge Operators . . .. ... ... .. ... .. 38

4.1.5 A-Isobar Components in the Wave Functions: the TCO
Method . . . . . . . . . .. 40
4.1.6 Electromagnetic A-Currents . . . . . . . ... ... .... 44
4.2 The Weak Transition Operators . . . . . .. ... ... .. .... 46
4.2.1 The Nuclear Weak Current and Charge Operators . . . . . 47
4.2.2 Two-Body Weak Vector Current and Charge Operators . . 49



TABLE OF CONTENTS vi

4.2.3 Two-Body Weak Axial Current Operators . . . . ... .. 50
4.2.4 Two-Body Weak Axial Charge Operators . . . . ... ... 51
4.2.5 Weak A-Contributions . . . . .. .. ... ... ...... 53
5 Trinucleon Form Factors 55
5.1 Electron-Scattering from Nuclei . . . . . ... ... .. ... ... 25
5.2 Calculation Details . . . . . . .. .. .. ... ... 60
53 Results. . . . . . . 65
5.3.1 Nucleons Only . . . . . . . . ... ... .. 65
5.3.2 Nucleonsand A’s . . . . . . ... ... ... ... 71
6 The *He Threshold Electrodisintegration 76
6.1 The 3He(€, ¢')pd Reaction at Threshold . . . . . ... ... .. .. 7
6.2 Calculation . . . . . . . . . . . e 81
6.3 Results. . . . . . . . .. 82
7 The hep Reaction 87
7.1 The hep Cross Section and Astrophysical S-factor . . . . . . . .. 89
7.1.1 The Transition Amplitude . . . . . . ... ... ... ... 90
7.1.2  The Multipole Expansion . . . ... ... ... ...... 92
7.1.3 The Cross Section. . . . . . . . . . . ... . ... .. 93
7.2 Calculation . . . . . . . . . e 95
7.2.1 Monte Carlo Calculation of Matrix Elements . . . . . . . . 95
7.2.2 Calculation of the Cross Section . . . . . .. ... ... .. 98
7.3 Results. . . . . . . . 101
7.3.1 Results for the S-factor . . . . . . ... ... ... ..... 101
7.3.2 The 3S; and *Py Captures . . . . . . .. ... ....... 104

7.3.3 Implications for the Super-Kamiokande Solar Neutrino
Spectrum . . . . ... 107
8 Conclusions 110

Vita 120



List of Tables

IT

I1I

IV

VI

Trinucleons binding energies in MeV corresponding to the AV14,
AV18, AV14/UVIII and AV18/UIX Hamiltonian models. The PHH
results for the AV14 potential are compared with those calculated
by solving the Faddeev equations in configuration- (F/R) and in
momentum-space (F/P). Also we compare the PHH and the GFMC
results when the AV18/UIX potential model is used. The GFMC
statistical errors are shown in parenthesis. . . . . . ... ... ..
Binding energies in MeV of “He calculated with the CHH
method using the AV18 and AV18/UIX and the older AV14 and
AV14/UVIII potential models. Also listed are the corresponding
“exact” GFMC results [4] and the experimental value. The GFMC
statistical errors are shown in parenthesis. . . . . . ... ... ..
Predictions obtained from the AV18/UIX Hamiltonian model with
the PHH method for the nd and pd doublet and quartet scattering
lengths as and a4. . . . . . . . ..o
Singlet a, and triplet a; S-wave scattering lengths (fm) for n*H
scattering calculated with the AV14 and p3He scattering calcu-
lated with the AV18, AV18/UIX and the older AV14/UVIII poten-
tial models. The n3H Faddeev results and the p3He experimental
values are also listed. . . . . . . .. ... ... oL
The wave function normalization ratios (Uya | Uyya)/ (¥ | ¥) ob-
tained for the bound three- and four-nucleon systems, when the
TCO calculation is based on the AV28Q) interaction. The purely
nucleonic CHH wave functions | W) correspond to the AV18/UIX
Hamiltonian model. . . . . . . . . ... o Lo
Cumulative and normalized contributions to the *H and 3He r.m.s.
charge radii, in fm, compared with the experimental data.

vil

17

20

22

23

72



LIST OF TABLES

VII Individual contributions from the different components of the nu-

clear electromagnetic current operator to the 3H and *He magnetic
moments and their pg and py combinations, in nuclear magnetons
(n.m.). Note that, because of isospin-symmetry breaking com-
ponents present in the PHH H and 3He wave functions, purely
isoscalar (isovector) currents give non vanishing contributions to
the py (ug) combination. The contributions to ug due to the 77g
and 2-A currents and those to py due to the SO2+4LL currents are
very small and are not listed. . . . . .. ... ... ... .....

VIII Cumulative and normalized contributions to the *H and *He mag-

IX

XI

netic moments and their pg and gy combinations, in nuclear mag-
netons (n.m.), compared with the experimental data. . . . . . ..
Cumulative and normalized contributions to the *H and 3He r.m.s.
magnetic radii, in fm, compared with the experimental data.

Contributions to the Gamow-Teller (GT) matrix element of tri-
tium [-decay, obtained with the PHH trinucleon wave functions
corresponding to the AV18/UIX Hamiltonian model. The rows la-
belled “one-body NR”and “one-body RC”list the contributions as-
sociated with the single-nucleon axial current operators of Eq. (137)
and Eq. (138), respectively, while the row labelled “mesonic”lists
the sum of the contributions due to the 7-, p-, and prm-exchange
axial current operators of Eqs. (142)—(144). The rows labelled “A-
g% and “A-g,”list the contributions arising from the one-body A-
currents of Egs. (150) and (151), respectively. The row labelled “A-
renormalization”lists the contributions associated with renormal-
ization corrections to the “nucleonic”’matrix element of ji(l)(q; A),
due to the presence of A-admixtures in the wave functions. The
cumulative result reproduces the “experimental value”0.957 for the
GT matrix element [12], once the change in the wave functions
normalization due to the presence of A-components is taken into
account. . ... oL e
The values of the N — A axial coupling constant g% in units of
ga, when the A-isobar degrees of freedom are treated in perturba-
tion theory (PT), or in the context of a TCO calculation based on
the AV28Q) interaction. The purely nucleonic CHH wave functions
correspond to the AV18/UIX Hamiltonian model. . . . . . . . ..

viil

74

75

)

99



LIST OF TABLES Ib'e

XII The hep S-factor, in units of 1072° keV b, calculated with
CHH wave functions corresponding to the AV18/UIX Hamiltonian
model, at p®He c.m. energies E=0, 5, and 10 keV. The rows la-
belled “one-body”and “full”list the contributions obtained by re-
taining the one-body only and both one- and many-body terms in
the nuclear weak current. The contributions due the 3S; channel
only and all S- and P-wave channels are listed separately. . . . . . 102

XIII Contributions of the S- and P-wave capture channels to the hep
S-factor at zero p3He c.m. energy in 1072° keV b. The results
correspond to the AV18/UIX, AV18 and AV14/UVIII Hamiltonian
models. . . ... 103

XIV Cumulative contributions to the reduced matrix elements (RMEs)
Ci(q; A), Li(q;A), Ei(q;A) and Mi(¢q;V) in 3S; capture at zero
p®He c.m. energy. The momentum transfer ¢ is 19.2 MeV /¢, and
the results correspond to the AV18/UIX Hamiltonian model. The
row labelled “one-body”lists the contributions associated with the
operators in Eq. (135) for the weak axial charge p(A), Eq. (136)
for the weak axial current j(A), and Eq. (133) for the weak vector
current j(V); the row labelled “mesonic”lists the results obtained
by including, in addition, the contributions associated with the
operators in Eqs. (145)—(147) for p(A), Eqgs. (142)—(144) for j(A),
and Eqs. (88)—(89) for j(V), with the substitutions 7; , — 7; + and
(i X T4), = (7: x 7;)+ (see Subsection 4.2.2); finally, the row
labelled “A”lists the results obtained by also including the contri-
butions of the operators in Eqgs. (152)—(153) for p(A), Egs. (150)—
(151) for j(A), and Eqgs. (154)—(155) for j(V). The A contributions
in both p(A) and j(A) are calculated with the TCO method, and
take into account the change in normalization of the wave functions
due to the presence of A-components. Those in j(V) are calculated
in perturbation theory. Note that the RMEs are purely imaginary
and in fm®2 units. . . . ... .. L 105



LIST OF TABLES

XV

XVI

Cumulative contributions, at momentum transfers ¢=0 and 19.2
MeV/c, to the reduced matrix elements (RMEs) L;(g; A) and
Ei(q;A) of the weak axial current in 3S; capture at zero p3He
c.m. energy. The results correspond to the AV18/UIX Hamiltonian
model. Notations as in Table XIV for “one-body”, “mesonic”and
“A-TCO”, which there was labelled “A”. Finally, the row labelled
“A-PT7”lists the results obtained by including the contributions of
the operator in Eq. (150), calculated in perturbation theory (PT).
The A-TCO results also take into account the change in normal-
ization of the wave functions due to the presence of A-components.
Note that the RMEs are purely imaginary and in fm?/? units.

Cumulative contributions to the reduced matrix elements (RMEs)
Co(q; A) and Ly(q; A) in 3Py capture at zero p3He c.m. energy. The
momentum transfer ¢ is 19.2 MeV/c, and the results correspond to
the AV18/UIX Hamiltonian model. Notations as in Table XIV.
Note that the RMEs are purely imaginary and in fm?/? units.

106

107



List of Figures

1 The Fujita and Miyazawa two-pion-exchange three-nucleon inter-
action diagram. Thin, thick, and dashed lines denote, respectively,
nucleons, A-isobars and pions. . . . . . . .. ... 11

2 Differential cross section o(#) as function of the c.m. scattering an-
gle 0, at c.m. energy of 1.2 MeV. The experimental data are taken
from Ref. [48]. The long-dashed and solid lines correspond, re-
spectively, to the CHH calculations with the AV18 and AV18/UIX
Hamiltonian models. . . . . . . . ... ... ... .. ....... 24

3 Feynman diagram representation of the pry and wnry transition
operators. Solid, dashed, thick-dashed and wavy lines denote re-
spectively nucleons, pions, vector-mesons and photons. . . . . . . 30

4 (a) OBE Feynman diagram representation; (b) Feynman diagram
representation of the two-body currents associated with meson-
exchange. Solid, dashed and wavy lines denote respectively nu-
cleons, mesons and photons. . . . . . .. ... ... L. 33

5t Feynman diagram representation of the three-nucleon two-pion ex-
change interaction. Solid and dashed lines denote respectively nu-
cleons and pions. The dashed circle corresponds to the 77 NN
VerteX. . . . L. e e e 36

6 Feynman diagram representation of the three-nucleon exchange
current operators. Solid, dashed and wavy lines denote respec-
tively nucleons, pions and photons. The dashed circle corresponds
tothe mr NN vertex. . . . . . . . . . .. .. .. 37

7 Feynman diagram representation of the NN — NA and NN —

AA transition interactions due to one pion exchange. Solid, thick-
solid, and dashed lines denote nucleons, A-isobars, and pions, re-
spectively. . . . . .. 41

8  Transition correlation functions u’™(r), u'™(r), etc. obtained
for the AV28Q model [77], and perturbation theory equivalents
wlTHPT () TP () Cete. L L 43

9 N A-transition two-body currents due to pion exchange. . . . . . . 46

xi



LIST OF FIGURES

10

11

12

13

14

Elastic scattering in one-photon exchange approximation. Solid,
thick-solid and wavy lines denote respectively electrons, hadrons
and photons. . . . . .. ...
Diagrammatic representation of operators included in j(A) due to
one-body currents j(V(N — A), (A — A), etc., transition
correlations UN2, U2, and corresponding Hermitian conjugates.

Wayvy, thin, thick, dashed and cross-dashed lines denote photons,

’ it
nucleons, A-isobars and transition correlations UP® and UBP |

respectively. . . . . . . ...
Diagrammatic representation of operators included in j(A) due to
two-body currents j@ (NN — NA), j@ (NN — AN), etc., tran-
sition correlations UM%, UA2, and corresponding Hermitian con-
jugates. Wavy, thin, thick, dashed and cross-dashed lines denote

/
photons, nucleons, A-isobars and transition correlations UB? and

UBB’T, respectively. . . . . ... L
Diagrams associated with connected three-body terms, which are
neglected in the present work. Wavy, thin, thick, dashed, cross-
dashed and dotted lines denote photons, nucleons, A-isobars, tran-

sition correlations UP5 and UBB’T, and the two-body current
JA(NN — NN), respectively. . . . . .. ... ... ........
The magnetic form factors of *H and 3He, obtained with single-
nucleon currents (1-N), and with inclusion of two-nucleon current
((142)-N) and 7rrg three-nucleon (TOT-N(D)) current contribu-
tions, are compared with data (shaded area) from Amroun et
al. [105]. Theoretical results correspond to the AV18/UIX PHH
wave functions, and employ the dipole parametrization (includ-
ing the Galster factor for Gg(q3)) for the nucleon electromag-
netic form factors. Note that the Sachs form factor Gy (q}) is
used in the model-independent isovector two-body currents ob-
tained from the charge-independent part of the AV1S8 interac-
tion. Also shown are the total results corresponding to the Gari-

Kriimpelmann parametrization [106] of the nucleon electromagnetic
form factor (TOT-N(GK)).. . . . .. .. ... ... ... ...

xil

o6

62

63

64



LIST OF FIGURES

15

16

17

18

19

20

21

Individual contributions to the Fj;(qg,) and F};(g,) combinations,
Eq. (196), of the *H and *He magnetic form factors, obtained with
the dipole parametrization of the nucleon electromagnetic form fac-
tors. The sign of each contribution is given in parenthesis. Note
that, because of isospin-symmetry breaking components present in
the *H and *He wave functions, the purely isovector PS, V and 77rg
currents (purely isoscalar pry current) give non vanishing contri-
butions to the Fiy(g.) (Fy(gu)) combination. However as the 7mg
(pmy) contribution is very small, is not shown. . . . . . . .. ...
The Fj;(q,) and F};(g,) combinations of the *H and *He magnetic
form factors, obtained with single-nucleon currents (1-N), and with
inclusion of two-nucleon current ((1+2)-N) and 77g three-nucleon
current (TOT-N) contributions, are compared with data (shaded
area) from Amroun et al. [105]. The dipole parametrization is used
for the nucleon electromagnetic form factors. . . . . . . . ... ..
The charge form factors of 3H and 3He, obtained with a single-
nucleon charge operator (1-N) and with inclusion of two-nucleon
charge operator contributions (TOT-N), are compared with data
(shaded area) from Amroun et al. [105]. Note that the 1-N results
also include the Darwin-Foldy and spin-orbit corrections. Theoret-
ical results correspond to the AV18/UIX PHH wave functions, and
employ the dipole parametrization of the nucleon electromagnetic
form factors. . . . . ...
Individual contributions to the FS(g,) and FY(g,) combinations,
Eq. (200), of the 3H and *He charge form factors, obtained with the
dipole parametrization of the nucleon electromagnetic form factors.
The sign of each combination is given in parenthesis. Note that,
because of isospin-symmetry breaking components present in the
3H and *He wave functions, the purely isovector wry (isoscalar pry)
charge operator gives a non vanishing contribution to the F£(q,)
(F¥(gu)) combination. . . .. ... ... ... ... ...
The magnetic form factors of *H and 3He, obtained with single-
nucleon currents (1-N), and with inclusion of two- and three-
nucleon current (TOT-N) and A (TOT-(N+A)) contributions. . .
The single-nucleon contribution to the Fj;(q,) and F;(g,) combi-
nation of the *H and 3He magnetic form factors is compared with
the 1-A and 2-A contributions, associated respectively with dia-
grams of Fig. 11 and 12. . . . . . . .. ... ... ... ...
Kinematic and coordinate system for scattering of polarized elec-
trons from a polarized target. . . . . .. .. ... ... ... ...

xiii

68

69

70

71

73

74



LIST OF FIGURES

22

23

24

25

26
27

28

The longitudinal and transverse response functions of *He, obtained
with the AV18/UIX Hamiltonian model and one-body only (dashed
lines) or both one- and two-body (solid lines) charge and current
operators, are compared with the data of Ref. [111] at excitation
energies below the ppn breakup threshold. . . . . . ... ... ..
The longitudinal (Ry), longitudinal-transverse (Rpzv), transverse
(Ry) and transverse-transverse (Ryv) response functions of *He, ob-
tained with the AV18/UIX Hamiltonian model and one-body only
(thick dashed lines) or both one- and two-body (thick solid lines)
charge and current operators, are displayed at a fixed excitation
energy of 1 MeV for three-momentum transfers in the range 0-5
fm~!. In R; and Ry we show the contributions associated with
the (dominant) S-wave pd scattering states, while in Ry and Ry
both S- and P-wave contributions are shown. . . . . . . . ... ..
The inclusive cross section, and the App and A asymmetries,
obtained with the AV18/UIX Hamiltonian model and one-body
only (dashed lines) or both one- and two-body (solid lines) charge
and current operators, are displayed for 3He at a fixed excitation
energy of 1 MeV for three-momentum transfers in the range 0-5
fm . The results in PWIA (dotted lines) are also shown. The
incident electron energy is 4 GeV, and the electron scattering angle
isin the range 0-14°. . . . . . . . . .. .o Lo
The SSM solar neutrino energy spectrum. The continuum neutrino
fluxes are given in cm~2 sec™! MeV ™!, the lines in cm ™2 sec™!. . .
Schematic representation of the hep reaction. . . . . . . ... ...
Diagrammatic representation of the operators included in O(A),
due to the one-body current and charge operators, to the transi-
tion correlations UN2 and U”* and the corresponding Hermitian
conjugates. Thin, thick, dashed and cross-dashed lines denote, re-

!
spectively, nucleons, A-isobars, and transition correlations U??

Electron energy spectrum for the ratio between the Super-
Kamiokande 825-days data and the expectation based on unoscil-
lated ®B neutrinos [24]. The data are taken from Ref. [23]. The 5
curves from the bottom to the top correspond respectively to no
hep contribution (dotted line), a=2.2, 4.4, 10, 20, with « defined
in Eq. (273). . . . . .

Xiv

82

85

86

88
90

97



Chapter 1
Introduction

In a non-relativistic approach to the study of the structure and dynamics of few-
body nuclei, these are seen as systems of particles, the nucleons, interacting among
themselves and, eventually, with external electroweak probes'. Although based
on a very simple and old idea, this approach has quite a remarkable success in
describing many nuclear properties [1]. The first condition for such a success
is the development of accurate models for the interaction among the nucleons
in a nucleus. The nuclear Hamiltonian is written as sum of a non-relativistic
kinetic energy term and two- and three-nucleon interactions. The main features
of the nucleon-nucleon (NN) interaction are a long-range part due to one-pion-
exchange (OPE), an intermediate-range attraction and a short-range repulsion.
While the OPE long-range part is well known, the more complicated intermediate-
and short-range components can be either modelled using heavy-meson-exchange
mechanisms (like in the CD Bonn interaction [2]), or parametrized in terms of
suitable functions and operators (like in the Argonne v (AV18) interaction [3]).
The coupling constants and cutoff masses at the mesonic vertices in the first
case, or the function parameters in the second case are then determined by fitting
the large body of NN experimental data, not only deuteron properties, but also
pp and np scattering data at laboratory energies below ~ 400 MeV, where the

scattering is predominantly elastic. The AV18 and CD Bonn interactions are

! The journal model for this thesis is Physical Review C



CHAPTER 1. INTRODUCTION 2

able to describe the NN database with a x? per datum of almost 1. A nuclear
Hamiltonian which includes only two-nucleon interaction is however unable to
reproduce the low-lying energy spectra of nuclei with A < 8 [4, 5]. A possible
solution to this problem is to go beyond two-nucleon interactions and introduce
three-nucleon interactions. A way of constructing these three-nucleon interactions
makes them arise from the internal structure of the nucleon. The long-range part
of the interaction can be obtained with the following mechanism: the exchanged
pion between two nucleons excites one of them into its lowest excited state, the
A-resonance. The A-resonance can then decay again into a nucleon, exchanging a
pion with a third nucleon. In the Urbana-type models (for instance, the Urbana IX
(UIX) [6]), the long-range part is given by this two-pion-exchange three-nucleon
interaction, while the short-range part is constructed in a pure phenomenological
way. The strengths of the long- and short-range components of the interaction
are then fitted to reproduce the experimental values of the *H binding energy and
nuclear matter equilibrium density. The full non-relativistic nuclear Hamiltonian
AV18/UIX has then been found able to describe with good accuracy the low-lying
energy spectra of systems with A < 8 [4, 5]. These models for the two- and three-
nucleon interactions, their derivation and their explicit expressions, are briefly
reviewed in Chapter 2.

The strong correlations between the nucleon spatial and internal degrees of
freedom (spin and isospin) induced by the nuclear interaction make the solution
of the Schrodinger equation a challenging task, even for the three- and four-body
nuclei. However, the recent remarkable progress in both methods and computa-
tional facilities now allow us to make reliable calculations for ground and scattering
states of light nuclei. We have considered in particular the so-called correlated
hyperspherical harmonics (CHH) method [7, 8, 9, 10, 11]. The wave function is
expanded on a basis of hyperspherical harmonic functions, multiplied by appro-
priate correlation factors, which are introduced to account for the correlations
induced by the NN interaction. Appropriate variational principles are then ap-
plied to obtain the unknown coefficients of the expansion. Although variational,

and in principle limited by the maximum number of basis functions included in the



CHAPTER 1. INTRODUCTION 3

expansion, the CHH method has achieved high accuracy in describing the three-
and four-body bound and scattering states. We review the method in Chapter 3.

The approach described so-far would be interesting, but of rather limited util-
ity, if it could be tested only comparing the theoretical and experimental binding
energies of few-body nuclei. In fact, many experimental results are available over a
wide range of energies, from the few keV of astrophysical interest to the hundreds
of MeV measured in electron-scattering experiments. Since in these processes nu-
clei interact with external electroweak probes, it is necessary to develop realistic
models for the nuclear current and charge operators. In fact, the construction
of such models has proven to be essential in the study of low-energy electroweak
processes [1]. In our model, the nuclear transition operator consists of one- and
many-body components. The one-body term, the so-called “impulse approxi-
mation”, arises in the simplest picture in which the electroweak probe interacts
with the individual protons and neutrons inside the nucleus. This is, however,
certainly incomplete: as discussed above, the nuclear interaction is mediated, at
long-range, by pion-exchange and seems to be rather well reproduced even at
intermediate- and short-range by heavy-meson exchanges. These exchanged par-
ticles can themselves interact with the external electroweak probe, and this leads
to the introduction of many-body currents. In the electromagnetic case, the lead-
ing two-body terms of the current operator are required by gauge invariance, and
can be linked to the model of the NN interaction by the continuity equation.
Constructing these terms to explicitly satisfy current conservation with the given
NN interaction leaves no free parameters in their expressions. In the weak case,
instead, the axial current operator is not conserved and, as such, is inherently
model dependent. This model dependence of its many-body components can be
reduced by constraining them to reproduce measured weak transitions, for exam-
ple by fitting the Gamow-Teller matrix element in tritium S-decay [12]. Finally, an
important aspect of the current is that the external electroweak probe can excite
the internal degrees of freedom of the nucleon, specifically its lowest excitation,
the A-resonance. Our approach has been extended to include these additional

contributions arising from A-excitation [13, 14], consistently with the model for
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the long-range part of the three-nucleon interaction. These A-contributions have
been found rather small in the electromagnetic case [13], but very important in
weak processes [12, 14]. The model for the nuclear transition operator is reviewed
in Chapter 4.

Within this approach, we have investigated three processes: elastic electron-
scattering from *H and *He [13], electrodisintegration of *He at threshold [15],
and p®He weak capture reaction [14, 16]. For the first process, there is a large
body of experimental results, and a thorough comparison between theory and
experiment can highlight what, in our approach, needs to be improved and refined.
We have calculated the trinucleon form factors on a wide range of momentum
transfer ¢ (from 0 up to 7 fm™!), and static properties like magnetic moments,
and magnetic and charge radii. While the 3H and 3He charge form factors and
static properties, and the 3H magnetic form factor are quite well reproduced, our
calculation fails to predict the 3He magnetic form factor in the first diffraction
region (¢ > 3 — 4 fm~!). This discrepancy persists even in the more refined
picture of the nucleus, where A-isobar degrees of freedom are included. This
has led, on the theoretical side, to speculations about the need of a more refined
model for the three-nucleon interaction, and, on the experimental side, to plan
for new more accurate measurements of the *He magnetic form factor at ¢ > 3
fm~! [17]. These results for the trinucleon elastic form factors are presented in
Chapter 5, together with definitions for the observables of interest and details of
the calculation.

A comparison between theory and experiment can also be performed in the
case of the threshold electrodisintegration of *He [15], although here the avail-
able experimental results have rather large errors. Generally, good agreement
has been found between measured and calculated observables, when both one-
and two-body contributions are included in the electromagnetic charge and cur-
rent operators. Indeed, the calculation in impulse approximation fails completely
to reproduce the experimental results, further reemphasizing the importance of
including many-body contributions in the transition operators. We review this

calculation in Chapter 6.
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Unlike the above processes, there are no direct experimental results for the
p3He weak capture reaction, known also as the hep reaction-the hep cross section
is too small to be measured experimentally. However, there has been recently
a revival of interest in this process [18, 19, 20, 21, 22|, spurred by the Super-
Kamiokande (SK) measurement of the energy spectrum of electrons recoiling from
scattering with solar neutrinos [23]. Over most of the spectrum, a suppression
~ 0.5 is observed relative to the standard-solar-model (SSM) predictions [24].
Above 14 MeV, however, there is an apparent excess of events. The hep process
is the only source of solar neutrinos with energies larger than about 15 MeV—their
end-point energy is about 19 MeV. The discrepancies between the measured spec-
trum and SSM predictions have led to question the reliability of the calculations
from which the SSM derives its hep neutrino flux estimate [25]. The calculation
of the hep reaction is rather delicate, since the S-wave capture induced by the
one-body axial current is suppressed, and consequently many-body axial currents
and P-wave contributions are highly enhanced. Within the approach described
so-far, we have performed a calculation of the hep reaction, using accurate CHH
wave functions, obtained from the AV18/UIX Hamiltonian model, and including
all possible transitions between the S- and P-wave initial state capture channels
and the *He final state. The chief conclusion of this study [14, 16] is that the
hep reaction cross section is enhanced by a factor of ~ 4.5 respect to the SSM
prediction, and 40 % of the total calculated value arises from the P-wave contri-
butions, which were neglected, or at least not sufficiently appreciated, in previous
studies [21, 25]. The main aspects of this calculation, together with a discussion
of the results and their implications, are given in Chapter 7. Conclusions and final

remarks are given in Chapter 8.



Chapter 2
The Nuclear Interaction

In the simplest picture, the nucleus is considered as a system of interacting neu-

trons and protons. In a non-relativistic framework, the Hamiltonian is given by:
p.
H:Z%+Zvij+2‘/}jk+"'a (1)

where the nucleons interact via two-, three-, and possibly many-body interactions.
In this Chapter we briefly describe some of the dominant features of the two- and
three-nucleon potential models, focusing on the Argonne vy4 [26] and v [3] two-

nucleon and Urbana VIII [27] and IX [6] three-nucleon interactions.

2.1 Two-Nucleon Interactions

The two-nucleon (IVN) interaction has an extraordinarily rich structure, as has
been recognized for quite a long time. It is described in terms of the nucleon’s
spin (30) and isospin (37), where both o and 7 are Pauli matrices. The former
variable represents the intrinsic angular momentum (spin) of the nucleon, while
the latter is a convenient representation for its two charge states—the proton and
neutron. The generalized Pauli principle in this framework requires that two-
nucleon states be antisymmetric with respect to the simultaneous exchange of
the nucleons’ space, spin, and isospin coordinates. The main part of the NN

interaction is isospin-conserving and can be written as linear combinations of
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components proportional to the two isoscalars, 1 and 7, - 7;. However, isospin-
symmetry-breaking terms are also present in the NN interaction: in fact, they
are necessary to reproduce with good accuracy simultaneously both pp and np
low-energy scattering data. We will return to this point later.

It is well known that the long-range component of the NN interaction is due
to one-pion-exchange (OPE). If isospin-symmetry-breaking terms are ignored, it

is given, at long distances, by:

2
ngE = InNN % YW(TZJ)O'Z c O + Tﬂ—('rz])sz Ti Ty, (2)
dr 3
e*mwrij
Yalryg) = —— (3)
wlij
3 3 —MxTij
L) = [ ) S B
MaTiy  (MaTij)?] marij

where m, is the mass of the exchanged pion, f,yy is the 7NN coupling constant
and

Sij = 30'i-rl-j0'j-rij—0'i-0'j (5)

is the tensor operator, r;; being the relative distance between particles 7 and j.
At distances comparable to the inverse pion mass (1/m, ~ 1.4 fm), OPE leads
to a large tensor component in the NN interaction. In nuclear systems, then, the
spatial and spin degrees of freedom are strongly correlated, and hence nuclear few-
and many-body problems can be quite different from systems where the dominant
interaction is independent of the particles internal quantum numbers (spin and
isospin), such as the Coulomb interaction in atomic and molecular problems.

At moderate and short distances, the NN interaction is much more compli-
cated. In this region, heavy-meson-exchanges and/or subnucleonic degrees of free-
dom all play a role, and the interaction models can be quite different, ranging from
one-boson-exchange (OBE) models to models with explicit two-pion-exchanges
(TPE) to purely phenomenological parametrizations. The models are then fit to
reproduce the available NN experimental data. The Argonne vy4 [26] interaction

model (AV14), in particular, falls in the last category of purely phenomenological
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parametrization and is parametrized as:

vi(r) = Z[UPOPE(T) + vlf(r) + vf(r)]ij , (6)

p

where ij is the set of 14 operators given by

Of]: 1, g, 0;j, Sij; (LS)”, LZZJ, LlQJO'ZO'], (Ls)z2]:| ®[1, Tl"‘l'j] . (7)

Here L is the relative orbital angular momentum and S the spin of the pair. The
first eight of these operators (those not involving two powers of the momentum) are
unique, in the sense that all such operators are implicitly contained in any realistic
NN interaction model. The primary motivation for the choice of the higher-order
terms is convenience in few- and many-body calculations: for example, the L?
terms do not contribute in relative S-waves. This set of 14 operators provide
sufficient freedom to fit the phase-shift and mixing angle parameters of the 14
singlet and triplet relative S-, P-, D- and F-waves.

The three radial functions of Eq. (6) are the long-range OPE part and the
intermediate- and short-range parts v!(r) and v;(r). The v?"®(r) function con-

tributes only for the operators
loi 05, SyloTi-T; (8)

as discussed above, and it is given by Eqgs. (2)—(4), where Y, and T} are calculated
using f2yy/4m = 0.081 (for the AV14) and are multiplied by smooth Gaussian
cutoffs that make them vanish at r = 0. The v](r) are parametrized as functions
proportional to T?, defined in Eqgs. (2)-(4), and consequently of two-pion-exchange
range. The v} (r) are short-range Woods-Saxon functions. The parameters of
the Woods-Saxon functions, as well as the coefficient for vzf(r), are adjusted to
reproduce the deuteron properties and np scattering data up to 400 MeV.
Before the early nineties, all the different NN interaction models, the AV14
as well as the available models based on OBE or TPE mechanisms, produced a
qualitatively similar picture of the NN interaction, consisting of OPE at long

range, an intermediate-range attraction and a short-range repulsion. However,
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quantitatively, all these models were somewhat different. There were several rea-
sons for this, chief among them was that they were in fact not all fit to the same
data set. For example, models fit to np data, like the AV14, did not precisely fit
the experimental pp data if only electromagnetic corrections were introduced.

When in the early nineties high quality phase shift analyses of the pp and
np data became available from the Nijmegen and VPI groups [28, 29, 30, 31, 32,
33, 34], several new NN interaction models were constructed to reproduce this
improved experimental database. As most important consequence, all the new
generation NN interaction models which are still in use today give a quantitatively
similar picture of the NN interaction.

Among these new models, the Argonne v13 (AV18) interaction [3] follows basi-
cally along the lines of its predecessor, the AV14. In fact, it can be expressed as the
sum of a charge-independent (CI) and a charge-symmetry-breaking (CSB) part.
The former has the same 14 operators components of the AV14, although there
are some differencies: (i) the charged and neutral pion mass splitting is taken into
account; (ii) the Nijmegen partial-wave analysis has found very little difference
between the coupling constants froyny and fr+yy, and therefore fyy is chosen
to be charge-independent; its value (f2y y/47m=0.075) is somewhat smaller than in
the AV14; (iii) the electromagnetic interaction, specified along with the strong in-
teraction, and treated up to order o, o being the fine structure constant, consists
of one- and two-photon Coulomb terms, Darwin-Foldy and vacuum polarization
contributions, and magnetic moment interactions [35].

The CSB term has three charge-dependent and one charge-asymmetric oper-
ators: these four operators are the minimal requirement in order to provide a

precise fit of the np and pp database simultaneously. They are given by:
Of =Ty, 00Ty, SijTy s (Tiz +752) (9)
where the isotensor operator is defined as
Tij =3Ti,Tj, —Ti*Tj - (10)

With a total of 40 adjustable parameters, the AV18 interaction is able to reproduce
the NN database with a x? per degree of freedom near one. Note that this large
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number of parameters is a feature common to all the interaction models of the

past decade.

2.2 Three-Nucleon Interactions

All the two-nucleon interactions which contain non-localities only at the level of
two powers of the relative momentum (p? or L?), as in the case of the AV14
and AV18, have been found to yield nearly identical results for the triton binding
energy, 7.624+0.01 MeV as compared to the experimental value of 8.48 MeV [36].
Furthermore, the equilibrium density of nuclear matter is overpredicted. One way
to solve this discrepancy is to include three-nucleon interactions in the nuclear
Hamiltonian.

A simple model for the three-nucleon interactions makes them arise from the
internal structure of the nucleon. Since all degrees of freedom other than the
nucleons have been integrated out, the presence of nuclear resonances, such as
the A-resonance, induces three-body forces. The long-range term involving the
intermediate excitation of a A-isobar, via pion exchanges, is illustrated in Fig. 1.
The two-pion-exchange three-nucleon interaction (20 TNI) was originally written

down by Fujita and Miyazawa [37]:

Vit = AZW[{XijaXik}{Ti'TjaTi'Tk}

ijk
1
+ Z[XijaXik][Ti'TjaTi'Tk]]7 (11)
where
2 2 1
A27r — <f7rNA> <f7rNN> : (12)
My My m — ma
Xij = Yw(rij)o'i . O'j + Tﬂ(mj)Si- . (13)

frna, m, and ma are respectively the TNA coupling constant, the nucleon and
the A masses and {---} ([---]) denote the anticommutators (commutators). This

interaction has been found to be attractive in light nuclei.
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The Urbana models for the three-nucleon interactions, the older Urbana
VIII [27] (UVIII) and the more recent Urbana IX [6] (UIX), are written as the
sum of the 27’ TNI plus a phenomenological shorter-range term of the form:

)

This term is of two-pion-exchange range on each of the two legs, and is meant to
simulate the dispersive effects which are required when integrating out A-isobar
degrees of freedom. This phenomenological short-range term is repulsive, and is
here taken to be independent of spin and isospin.

The constants Ay, and Uy in Egs. (11) and (14) are adjusted to reproduce the
triton binding energy in “exact” Green’s function Monte Carlo (GFMC) calcula-
tions [4], and the nuclear matter equilibrium density in variational calculations
based on operator-chain expansion [38]. Recent GFMC calculations based on the
AV18/UIX Hamiltonian model have been shown to provide a reasonable descrip-

tion of the low-energy spectra and charge radii of nuclei with A <8 [4, 5].

FIG. 1: The Fujita and Miyazawa two-pion-exchange three-nucleon interaction
diagram. Thin, thick, and dashed lines denote, respectively, nucleons, A-isobars
and pions.



Chapter 3

Bound- and Scattering-State

Wave Functions

Given a model for the nuclear Hamiltonian, the next step consists in obtaining the
nuclear bound and scattering states, and in comparing the calculated observables
with the available experimental data. Although the nuclear interaction models
described in the previous Chapter are quite simple to write down, the solution of
the Schrodinger equation, even for the three- and four-nucleon systems, is a very
challenging task. This is mainly due to the strong correlation between the spatial
and internal degrees of freedom (spin and isospin) of the nucleons present in these
interactions.

Several techniques have been developed through the years to solve this problem
and intense effort continues to go on for their implementation. For the three-
nucleon system, there is a long history of numerical methods: one of the most
established one is the Faddeev method. The basic idea of this technique is to
rewrite the Schrodinger equation as a sum of three equations in which (for two-
nucleon interactions at least) only one pair interacts at a time. The resulting
equations are solved in either momentum- or coordinate-space. The Faddeev
(and Faddeev-Yakubovsky) methods have been applied to solve the bound as well
as the scattering states of three- and, recently, four-nucleon systems [39, 40, 41].

While these techniques are in principle “exact”, their implementation, particularly

12



CHAPTER 3. BOUND- AND SCATTERING-STATE WAVE FUNCTIONS 13

in momentum-space, is difficult when the Coulomb interaction is present, such as,
for example, in the pd and p 3He scattering channels. In fact, at this point in time,
we are not aware of any Faddeev calculation for the p3He scattering problem.

Techniques based on quantum Monte Carlo methods have been also developed
to solve the problem of few-body nuclei, with mass number A < 8 [4, 5], and are
currently being extended to treat systems with A = 9. These are the variational
Monte Carlo (VMC) and the Green’s function Monte Carlo (GFMC) techniques.
The VMC is an approximate variational method that uses Monte Carlo techniques
to perform the spatial integrations. The GFMC method, on the other hand,
employs Monte Carlo techniques to evaluate the imaginary-time path integrals
relevant for a light nucleus. It typically uses the VMC wave functions as a starting
point, and cools them in order to measure ground-state observables.

More recently, the few-body systems with A < 4 have also been studied with
a variational technique known as the correlated-hyperspherical-harmonics (CHH)
method, developed by Kievsky, Viviani, and Rosati [7, 8, 9, 10, 11, 15, 42, 43,
44, 45, 46, 47]. This method consists in expanding the wave function over a basis
of hyperspherical harmonic functions multiplied by correlation factors. Although
variational and in principle limited by the maximum number of basis functions
kept in the expansion, this technique has achieved high accuracy in describing
the three- and four-body bound and scattering states. In fact, we have used
this method to calculate the 3H, 3He and *He wave functions and the pd and
p3He scattering-state wave functions at energies below deuteron and *He breakup
thresholds, respectively.

This Chapter is divided into two Sections: in Section 3.1 we review the CHH
method for the bound state problem, while in Section 3.2 we describe the CHH

method for the scattering problem.

3.1 The Bound-State Wave Functions

In this Section, we describe the main features of the CHH method, when applied

to calculate the trinucleon wave functions in Subsection 3.1.1, and the a-particle
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wave function in Subsection 3.1.2.

3.1.1 The Three-Nucleon Wave Function

The wave function ¥ of a three-nucleon system with total angular momentum .J.J,

and total isospin 1T, can be decomposed as

3

U= Zw(xi,}%) ) (15)

i1

where the amplitude ¢ (x;,y;) is a function of the Jacobi coordinates x; = r; —ry
and y; = (r; + vy — 21;) /V/3, 1,5,k being a cyclic permutation of 1,2,3. To ensure
the overall antisymmetry of W, the amplitude 1(x;,y;) is antisymmetric with

respect to exchange of nucleons j and k, and is expressed as [8, 9]

O(x5,yi) =D Fa®alwi, 1) Vald, ki 7) (16)

(o3 z

Valiskii) = {[Ve (R0 @ Y2, (2], ®[sg;’“@si]sa}“z[Tgf@ti}TT ,(17)

where each channel « is specified by the orbital angular momenta /¢, L, and A,
the spin (isospin) SZ¥ (T?¥) of pair jk and the total spin S,. Orbital and spin
angular momenta are coupled, in the LS-coupling scheme, to give total angular
momenta J.J,. The correlation factor F,, takes into account the strong state
dependent correlations induced by the NN interaction. Two different forms have

been employed for Fj:

Fo = falrjk) = fo(zi) , (18)
Fo = farjk)9a(rij)ga(rik) - (19)

In the first case, the wave function includes correlation effects only between nu-
cleons 7 and k in the active pair, while in the second case, the wave function
includes in addition correlation effects between these and the spectator nucleon 4.
Traditionally, the method is known as pair-correlated hyperspherical harmonics

(PHH) method when the first choice of the correlation factor is employed. For
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realistic soft-core potentials, like the AV14 or AV18, the convergence pattern with
respect to the number of basis functions appears to be somewhat faster in the PHH
expansion than in the CHH one. This is not true in the case of the a-particle.
Therefore, we have used the PHH expansion to solve the three-body problem and
the CHH one in the study of the a-particle.

The (channel-dependent) correlation functions f,(r;;) are obtained with the
following procedure: when two of the nucleons are close to each other and far
removed from the others, it is expected that their wave function will be pre-
dominantly influenced by their mutual interaction. The radial wave function for
two particles in state S=jg I Sék Tgk is then obtained from solutions of two-body
Schrodinger-like equations

%:[Tﬂ,ﬁ’ (r) + vg,pr(r) + Agor (1)) for(r) = 0. (20)
T and vg g are the kinetic and potential energy operators,
RPlo* 20 ls(lg+1)
mlar trar T 2 |0
vag = (Blujelf) (22)

and vjj, is the NN interaction. The term Ag g (r) in Eq. (20) simulates the effect

Tsp = (21)

of the interaction of the active pair with the remaining particles in the system and

is chosen to be of the simple form
A (1) = Nge " dp9 (23)

where )\% and vy are two parameters that allow fz(r) to satisfy appropriate bound-
ary conditions. For more details, see Refs. [7, 8.

Next, we introduce the hyperspherical coordinates p and ¢;, defined as

p=\JAE,  cosdi=gi/p. (24)

Note that the hyper-radius p is independent on the permutation ¢ considered. The
dependence of @, (z;,y;) on p and ¢; is then made explicit by writing

Mo , «
Culan) = 3. " 2260 (25)
n=0
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1 1
Z2(¢i) = Nieke(cos ¢i)" (sin ¢i) = Pt " 7% (cos 263) (26)

where Nf»Le are normalization factors, P®# are Jacobi polynomials and n is
a non-negative integer, n = 0,---, M,, M, being the selected number of basis

functions in channel a. The complete wave function is then written as

a2 un(p) .
v o= Z Zfa(xi)ya(],k;l) Z p5/2 Zn(¢l) . (27)
ijkcyclic o n=0

The Rayleigh-Ritz variational principle,
(0,2V|H— E|¥)=0, (28)

is used to determine the hyper-radial functions ul(p) in Eq. (27). Carrying out
the variation 6, ¥ with respect to the functions u%(p), the following equation is

easily derived:

> (fal@i)Vald k1) Z3 (60) |H — E|¥) lo= 0, (29)
ijk cyclic
where €2 denotes the angular variables ¢;, X; and y;. Performing the integration
over {2 and spin-isospin sums (as implicitly understood by the notation (---) |q)
leads to a set of coupled second order differential equations for the u%(p), which
is then solved by standard numerical techniques [7, 8].

The binding energies in MeV of the A=3 nuclei obtained with the PHH method
from the AV14, AV18, AV14/UVIII and AV18/UIX Hamiltonians are listed in Ta-
ble I [9]. Also listed in Table I are results calculated with converged configuration-
space [40] and momentum-space [41] Faddeev wave functions for the AV14, and
with the GFMC method [4] for the AV18/UIX potential model. The binding
energies obtained with the various methods are in excellent agreement with each

other, typically within 10 keV or less.

3.1.2 The *He Wave Function

The CHH approach has also been applied to the four-nucleon problem [10, 11,

46]. When studying the *He nucleus, it is convenient to consider the two sets of
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TABLE I: Trinucleons binding energies in MeV corresponding to the AV14, AV18,
AV14/UVIII and AV18/UIX Hamiltonian models. The PHH results for the AV14
potential are compared with those calculated by solving the Faddeev equations in
configuration- (F/R) and in momentum-space (F/P). Also we compare the PHH
and the GFMC results when the AV18/UIX potential model is used. The GFMC
statistical errors are shown in parenthesis.

Model Method B(*H) B(*He)
PHH 7.683 7.032

AV14 F/R 7.670 7.014
F/P 7680 -

AV18 PHH 7.640 6.930

AV14/UVIII PHH 847  7.73

AVI8/UIX PHH 849  7.75
GFMC  8.47(1) 7.71(1)

expt. 848 T1.72

Jacobi coordinates, which correspond to the partitions 143 and 2+2. The Jacobi

variables corresponding to the partition 1+3 are defined as

Xap = Ty =T, (30)
Yap = /4/3(rr — Ryj) , (31)
zap = /3/2(r;—Ry) , (32)

while those corresponding to the partition 2+2 are defined as

XBp = I'j - r;, (33)
YBp = \/§(sz - Rij) ) (34)
Zgp = I —Tg, (35)

where R;; (Ry;) and R;j; denote the center-of-mass positions of particles ij (kl)

and ijk, respectively. The wave function ¥ is then expanded as

V= Z[wA(XApa Y ap» Zap) + V(XBp, Y Bp) ZBp)] ) (36)
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where the index p runs over the even permutations of particles ijkl.
The procedure is similar to the one used for the three-nucleon problem and

the amplitudes 14 and g are expanded as
Ya(Xap, Yap, Zap) = Z Fop ¢§(37Apa Yaps ZAp) Yofp ) (37)

wB (XBp7 YBp, ZBp) = Z Fa,p ¢aB (pra YBp, ZBp) Yal?p ) (38)

where

Yofp = { [[Yela (2.4p) Yo, (yAp)]zlga Yes, ()A{AP)]LQ “[Sisj]sw Sk] Sbe Sl] s, }JJ

z

X “[titj]thk]Tbatl] , (39)

TT,

Ve = {[Vou @) Vi )l Yoo o)l lsvsils, |}

< |lttlr et | (10)

Here a channel « is specified by: orbital angular momenta ¢, (24, {34, {124, and
L; spin angular momenta S, Spa, and Sy; isospins 1,, and Tp,. The total orbital
and spin angular momenta and cluster isospins are then coupled to the assigned
JJ, and TT,. The overall antisymmetry of the wave function ¥ is ensured by
requiring that both 14 and 15 change sign under the exchange i = j.

The correlation factors F, , is written, similarly to Eq. (19), as product of
correlation functions, that are obtained from solutions of two-body Schrodinger-
like equations, as discussed in the previous Subsection and, in more details, in
Ref. [10].

The radial amplitudes ¢ and ¢Z are further expanded as

Unm (P o

Qsé(xApayApazAp) = Z p4( )Zﬁllﬁ y%}? 335135 Xnm(¢§pa¢3p) ) (41)
Wi (P

¢g(pr=prszp) = Z p4( )Zfelﬁ y?g 37%; Xgm(¢§;a¢3p) ) (42)
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where the magnitudes of the Jacobi variables have been replaced by the hyper-

spherical coordinates, which in the four-body case are given by:

p =72 T V2 + Pop = VT By T 2By (43)
COs ¢3p = xAp/p = pr/p > (44)
cos ¢y, = Yap/(psines,) (45)
cos b, = Ynp/(psings,) . (46)

As in the three-body case, the hyper-radius is independent of the permutation p
considered.
Finally, the hyper-angle functions X2 consist of the product of Jacobi poly-

nomials

1 1 1
Xsm(ﬁ, ,)/) — Ngém (Sin B)QmPTf(Zaye:Sa'i'z (COS 2/8)Prl;1,1a+27e2a+2 (COS 27) 7 (47)
where the indices m and n run, in principle, over all non-negative integers, Ky, =
Ui + log +2m + 2, and N2, are normalization factors [10].
Once the expansions for the radial amplitudes ¢ and ¢” are inserted into

Egs. (37) and (38), the wave function ¥ can schematically be written as

w=y g (), (18)

where z(p) stands for either u(p) or w(p) (yet to be determined), depending on
whether channel « is constructed with partitions 143 or 2+2, and the factor Z;,
includes the dependence upon the hyper-radius p due to the correlation functions,
and the angles and hyper-angles, denoted collectively by €.

Again, the Rayleigh-Ritz variational principle given in Eq. (28) is used to
determine the hyper-radial functions z2,,(p) in Eq. (48) and ground-state energy
E: the procedure is exactly the same as in the three-body problem.

The present status of ‘He [10, 46] binding-energy calculations with the CHH
method is summarized in Table II. The binding energies calculated with the CHH
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method using the AV18 or AV18/UIX Hamiltonian models are within 1.5 % of
corresponding GFMC results [4], and of the experimental value (when the three-
nucleon interaction is included). The agreement between the CHH and GFMC
results is less satisfactory when the AV14 or AV14/UVIII models are considered,
presumably because of slower convergence of the CHH expansions for the AV14
interaction. This interaction has tensor components which do not vanish at the

origin.

TABLE II: Binding energies in MeV of *He calculated with the CHH method using
the AV18 and AV18/UIX and the older AV14 and AV14/UVIII potential models.
Also listed are the corresponding “exact” GFMC results [4] and the experimental
value. The GFMC statistical errors are shown in parenthesis.

Model CHH GFMC
AV18 24.01 24.1(1)
AV18/UIX 27.89 28.3(1)
AV14 23.98 24.2(2)
AV14/UVIII 27.50 28.3(2)
expt. 28.3

3.2 The Scattering-State Wave Functions

The PHH and CHH methods have also been used to calculate the wave functions
in three- and four-body scattering problems. The three-body scattering problem
has been studied with the PHH method both below and above deuteron breakup
threshold [8, 9, 45], while for the four-body scattering problem, only the p*He and
n3H systems have been studied, below breakup. We discuss here the application
of the method to the pd (nd) and p®He (n*H) cases, below the deuteron and *He
(*H) breakup threshold.

In Subsection 3.2.1 we describe the technique for the scattering-state wave
function, and in Subsection 3.2.2 we present some results for the three- and four-

body problems.
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3.2.1 The Method for Scattering-State Wave Functions

The wave function \Ifffjjz, having incoming orbital angular momentum L and

channel spin S (S =1/2,3/2 for Nd and S = 0,1 for p*He and n*H) coupled to

total J.J,, is expressed as
N T e (49)

where W, vanishes in the limit of large intercluster separation, and hence de-
scribes the system in the region where the particles are close to each other and
their mutual interactions are large. In the asymptotic region, where intercluster
interactions are negligible, W£5//: "in the p+ A-cluster case, is written as

\IlaLSJJz — Z Z [[Sz X ¢A]S’ X YLI(f'pA)]

i L'S!

X [5LL’ dgsr

JJ.

Fyo
M + RZS,L’S’ () ,  (50)

Prpa Prpa
where ¢4, r,4 and p are respectively the A-cluster wave function, the proton
and A-cluster relative distance and magnitude of the relative momentum. The
functions Fj, and G, are the regular and irregular Coulomb functions, respectively.
Note that for nd and n3H scattering, Fy(x)/x and G(x)/x are to be replaced by
the regular and irregular spherical Bessel functions. The function ¢(r,4) modifies
the G'(prpa) at small 7,4 by regularizing it at the origin, and g(rp4) — 1 as
rpa > 10 — 12 fm, thus not affecting the asymptotic behavior of \Iffffljz. Finally,
the real parameters Ry ;s (p) are the R-matrix elements which determine phase-
shifts and (for coupled channels) mixing angles at the energy p®/(2u), p being the
1+A reduced mass. Of course, the sum over L'S’ is over all values compatible
with a given J and parity.

The “core” wave function ¥, is expanded in the same PHH or CHH basis as
discussed in Subsections 3.1.1 and 3.1.2. Both the matrix elements Ry 1/ (p)
and the hyper-radial functions occurring in the expansion of ¥, are determined

applying the Kohn variational principle, which states that the functional

2
rar P .
[Ris 1 (P)] = Rig s (p) — (WP 575 H — Ex — = |01P17) (51)
21
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has to be stationary with respect to variations in the Ry 1, and the hyper-radial
functions. Here E4 = —2.225 MeV is the deuteron energy in the three-body
problem and EF4 = —7.72 MeV (E4 = —8.48 MeV) is the *He (*H) energy in the
four-body problem.

3.2.2 Results for Three- and Four-Body Scattering Prob-

lems

To check the validity of the CHH approach for the scattering problem, phase-shifts
and mixing angles for nd scattering at energies below the three-body breakup
threshold obtained from the AV14 have been compared with the corresponding
Faddeev-Yakubovsky results [47]. The agreement between these two techniques
has been found excellent, thus establishing the high accuracy of the CHH method
for the scattering problem. It is important to reemphasize that this scheme,
in contrast to momentum-space Faddeev methods, permits the straightforward
inclusion of Coulomb distortion effects in the pd channel. Therefore, the results
for pd elastic scattering are presumably as accurate as those for nd scattering.
Several results have been obtained in the last few years for the scattering
observables of the three-body problem. Here we only list in Table III the nd
and pd doublet and quartet scattering lengths predicted by the AV18/UIX model,
which are found to be in excellent agreement with the available experimental

values.

TABLE III: Predictions obtained from the AV18/UIX Hamiltonian model with
the PHH method for the nd and pd doublet and quartet scattering lengths ay and
Qay.

ay (fm) ay (fm)
PHH expt. PHH expt.
nd  0.63 0.65+0.04 6.33 6.35 £ 0.02
pd —0.02 13.7

A similar comparison between the CHH and Faddeev-Yakubovsky methods
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can be done for the four-body problem, comparing the singlet and triplet scat-
tering lengths for the n®H zero-energy scattering problem calculated with the
AV14. These results are given in Table IV. Also listed there, are the p*He singlet
and triplet scattering lengths predicted by the AV18, AV18/UIX and the older
AV14/UVIII models, compared with the corresponding experimental values. The
latter, however, have rather large errors. In fact, these p3He data have been ex-
trapolated to zero energy from measured data taken above 1 MeV, and therefore
could suffer also of large systematic uncertainties.

The lowest energy measurements for p >He elastic scattering have been taken at
a center-of-mass (c.m.) energy of 1.2 MeV, and consist in differential cross section
o(0) [48] and proton analyzing power A,(6) [49] data (# is the c.m. scattering
angle). The theoretical prediction for o(6) obtained from the AV18 and AV18/UIX
interactions, is compared with the corresponding experimental data in Fig. 2.
Inspection of the figure shows that the differential cross section calculated with
the AV18/UIX model is in excellent agreement with the data, except at backward
angles, where the experimental cross section is slightly underpredicted. A detailed

study of p3He elastic scattering is currently underway [50].

TABLE IV: Singlet a, and triplet a; S-wave scattering lengths (fm) for n3H scat-
tering calculated with the AV14 and p3He scattering calculated with the AV18,
AV18/UIX and the older AV14/UVIII potential models. The n3H Faddeev results
and the p3He experimental values are also listed.

Method  Model n3H p3He
as as a

CHH AV14 4.32 3.80
Faddeev AV14 4.31 3.79
CHH AV18 12.9 10.0
CHH AV18/UIX 11.5 9.13
CHH AV14/UVIII 9.24

expt. 10.842.6 8.1+0.5

10.24+1.5
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FIG. 2: Differential cross section o(f) as function of the c.m. scattering angle 6,
at c.m. energy of 1.2 MeV. The experimental data are taken from Ref. [48]. The
long-dashed and solid lines correspond, respectively, to the CHH calculations with
the AV18 and AV18/UIX Hamiltonian models.



Chapter 4
The Nuclear Transition Operators

In studying processes where the structure of the nucleus is investigated using elec-
tromagnetic or weak probes, the construction of a realistic model for the nuclear
electroweak current and charge operators becomes a fundamental aspect of the
calculation. When such studies are carried out in the simplest picture of the nu-
cleus, a non-relativistic many-body theory of interacting nucleons, the electroweak
current and charge operators are expressed in terms of those associated with the
individual protons and neutrons, the so-called “impulse approximation” (IA) (we
will refer to these also as “one-body”operators). Such a description, however, is
certainly incomplete. As already discussed in Chapter 2, the NN interaction is
mediated, at long distances, by pion-exchange, and seems to be rather well de-
scribed by a boson-exchange picture even at intermediate- and short-range. Thus
the electroweak probe can interact with these exchanged particles, and this leads
to the introduction of effective many-body current and charge operators. It should
be realized that these many-body operators arise, as does the NN interaction it-
self, as a consequence of the elimination of the mesonic degrees of freedom from
the nuclear state vector. Clearly, such an approach is justified only at energies
below the threshold for meson (specifically, pion) production, since above this
threshold these non-nucleonic degrees of freedom have to be explicitly included in
the state vector.

Although very successful in giving a quantitative prediction of many nuclear

25
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observables [1], this picture of the nucleus has to be considered greatly simpli-
fied. The nucleons, which are taken as effective constituents of the nucleus, are
in fact composite particles (clusters of quark and gluons, in quantum chromo-
dynamics), and the electromagnetic and weak probes can therefore excite their
internal degrees of freedom. To investigate the contribution from these processes,
we have included in our approach the lowest excitation of the nucleon, the A-
resonance [13, 14]. Although these A-contributions have been found to be rather
small in the electromagnetic case [13], they are very important in weak processes,
especially in the hep reaction [14, 16, 25, 51]. We will return to these issues in
more detail below and in the next Chapters.

This Chapter is divided into two main parts: in the first one, we describe the
electromagnetic current and charge operators, in the second we discuss the model

for the weak transition operator, both its vector and axial-vector components.

4.1 The Electromagnetic Transition Operators

In this section we describe the model for the electromagnetic current and charge
operators. First, we discuss the model when only nucleonic degrees of freedom
are considered (Subsections 4.1.1-4.1.4). In the second part of this Section, we
describe the extended model wave function and current operators that include
A-isobar degrees of freedom (Subsections 4.1.5 and 4.1.6).

4.1.1 Nuclear Current and Charge Operators

The nuclear current and charge operators are expanded into a sum of one-, two-
and, in the case of the current, three-body terms:
. «(1 (2 (3
i@ = Xi@+ i@+ X Gk, (52)
i i<j i<j<k

pla) = X p(@ + Y pi(a) . (53)

i<j
where q is the momentum transfer. The one-body operators j) and p(™ have the

standard expressions obtained from a non-relativistic reduction of the covariant
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single-nucleon current, and are given by

1 1

(1) - g Y iqr;
i@ = g-a {pnevT - oo x o (54)
1 1 1
A = pike(a) +plo(a) (55)
where {---, ---} denotes the anticommutator, and
PRe(a) = eelam (56)

(1) — 1 igr;
Pi q = —1 €;€
z,RC( ) ( /71 q2/4m2 )

i -
_4—7712(2“i —€)q- (o x p;)e’? . (57)

The following definitions have been introduced:
1
@ = 5 |GE@) +Ghg)ns] . (58)

1
pi = §[G§4(QZ)+G1\V4(QZ)TLZ] ; (59)

and p, o, and 7 are the nucleon’s momentum, Pauli spin and isospin operators,

(1)

respectively. The two terms proportional to 1/m” in p; 3¢ are the well known

Darwin-Foldy and spin-orbit relativistic corrections [52, 53], respectively. The
Gz//‘;/[(qﬁzl) are the electric/magnetic (E /M) isoscalar/isovector (S/V') form factors

of the nucleon, taken as function of the four-momentum transfer
¢=q"—w >0, (60)

where, for example, the energy transfer w = /g2 + m2 — mr for elastic scattering
on a target of mass my initially at rest in the lab. These form factors are related

to the standard Pauli and Dirac form factors by:

2
S/V S/V q S/V
Gl = B - 155" @) (61)
e (@) = FVA)+ BV, (62)

and are normalized as
Gp(0) = GR(0) =1,
G5,(0) = 0.880 py ,
GY,(0) = 4.706 py , (63)
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pn being the nuclear magneton (n.m.). The g,-dependence is constrained by an-
alyzing electron-proton and electron-deuteron scattering data. While the proton
electric and magnetic form factors are experimentally fairly well known over a wide
range of momentum transfers, there is significant uncertainty in the neutron form
factors, particularly the electric one, which are obtained from model-dependent
analyses of ed data. Until this uncertainty in the detailed behaviour of the elec-
tromagnetic form factors of the nucleon is narrowed, quantitative predictions of
electro-nuclear observables at high momentum transfers will remain rather tenta-
tive.

In the next Subsections we describe: (i) the two-body nuclear current oper-
ators; (ii) the three-body nuclear current operators associated with S-wave pion
rescattering; (iii) the two-body nuclear charge operators; (iv) the inclusion of A-

isobar components in the wave functions, and (v) the A-isobar current operators.

4.1.2 The Two-Body Current Operators

Two-body electromagnetic current operators have conventionally been derived as
the non-relativistic limit of Feynman diagrams, in which the meson-baryon cou-
plings have been obtained from either effective chiral Lagrangians [54] or semi-
empirical models for the off-shell pion-nucleon amplitude [55]. These methods
of constructing effective current operators, however, do not address the problem
of how to model the composite structure of the hadrons in the phenomenologi-
cal meson-baryon vertices. This structure is often parametrized in terms of form
factors. For the electromagnetic case, however, gauge invariance actually puts
constraints on these form factors by linking the divergence of the two-body cur-
rents to the commutator of the charge operator with the NN interaction. The
latter contains form factors too, but these are determined phenomenologically by
fitting NN data. Thus the continuity equation reduces the model dependence of
the two-body currents by relating them to the form of the interaction. This point
of view has been emphasized by Riska and collaborators [56, 57, 58, 59, 60| and
others [61, 62, 63], and is adopted in the treatment of two-body currents that we
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discuss here. We will refer to it as the so-called Riska-prescription.

The electromagnetic current operator must satisfy the continuity equation

q J(q) = [Ha p(CI)] ) (64)

where the Hamiltonian A includes two- and three-nucleon interactions and is given
in Eq. (1). To lowest order in 1/m, the continuity equation (64) separates into

separate continuity equations for the one-, two-, and many-body current operators

2

. b;
a i@ = [P ) | (63
a3 (@) = [vy. pRe(@) + pfRe(@)] (66)

and a similar equation involving three-nucleon currents and interactions.

The one-body current in Eq. (54) is easily shown to satisfy Eq. (65). The
isospin- and momentum-dependence of the two- and three-nucleon interactions,
however, lead to non-vanishing commutators with the non-relativistic one-body
charge operator, and thus link the longitudinal part of the corresponding two-
and three-body currents to the form of these interactions. At the moment we will
limit our discussion to two-body currents; the investigation of three-body current
operators is presented in Subsections 4.1.3 and 4.1.6.

The two-body current operator has been separated into model-independent
(MI) and model-dependent (MD) terms. The former are constructed to explicitly
satisfy current conservation with a given interaction model, and are determined
from the interaction model itself (in the present case, the AV14 or the charge-
independent part of the AV18 model) following the Riska-prescription; the latter
are the purely transverse currents associated with the prvy and wny electromag-

netic couplings of Fig. 3, and are therefore unconstrained by the NN interaction.

Their explicit expressions are [1]

; fﬂNngNNGpﬂ"‘/ (QZ)

jp?r'y(kiakj) = . T Tj kZ X k]
M

NCEar i emrm TACIAC)

k? 4 m2) (k3 +m?2)
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FIG. 3: Feynman diagram representation of the pry and wmy transition operators.

Solid, dashed, thick-dashed and wavy lines denote respectively nucleons, pions,
vector-mesons and photons.

e n?)(/l:; n mg)fp(’fi)fw(kj)] : (67)

™ w GUJ’TI' 2
jUJ’]’l”y(ki;kj) _ lf NNgWJ;ZVmW ’Y(qu) kZ % k]
[7_. g; - kz
(k7 A+ m2) (kF +m2)
O'j . kj
T2 772 2
(k7 +m2) (k3 +m2)

f?r(kz)fw(kj)

Fulki) 2 (k7)) (68)

where k; and k; are the fractional momenta delivered to nucleons 7 and j with q =
k; +k;, my, m, and m,, are the pion, p-meson and w-meson masses, respectively,
and g,yn and g,yn are the vector pNN and wNN couplings. The g,-dependence
of the transition form factors G, (¢,) and Gur(qz) is modeled, using vector-

dominance, as:

Gory(@y) = Gomr/ (1 + Gu/m3) | (69)
wa’y(qz) = gww’y/(l + qz/m?)) . (70)

The values of G,ry(q:) and Gury(g;) at the photon point are known to be
Gpry(0) = gpry = 0.56, Ref. [64], and Gury(0) = gury, = 0.68, Ref. [55], from
the measured widths of the p — 7y and w — 7y decays.

Finally, f.(k), f,(k) and f,(k) are monopole form factors introduced to take

into account the composite nature of nucleons and mesons. They are given by:

A2 — m2
= "o (71)

fa(k) = AR
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with @ = 7, p,w. The cutoff parameters A;, A, and A, in these form factors
are not known. We use the values A, = 3.8 fm ! and A, = A, = 6.3 fm!
obtained from studies of the deuteron electromagnetic form factors, in particular
the B-structure function [65].

The MI two-body currents are obtained using the Riska-prescription. In this
approach it is assumed that for a given NN interaction vy y, the isospin-dependent
central (v7), spin-spin (v°7) and tensor (v'") components can be attributed to
exchanges of “m-like” pseudoscalar (PS) and “p-like”vector (V) mesons. Working

in momentum-space, we have
onn(k) = [vT (k) + 077 (k)o; - o; + 07 (k)Si; (k)] - 75, (72)

where v (k), v77(k) and v'" (k) are related to their configuration-space correspon-

dents by the relations:

v (k) = 4#/000 r2dr jo(kr)v™ (r) (73)
() = ‘/t—g /0  2dr Lo(kr) — 1077 (r) | (74)
o (k) = ‘/i—;r | ™ r2dr iy (kYo' (r) | (75)

The factor jo(kr) — 1 in the expression for v77 (k) ensures that its volume integral

vanishes. The tensor operator in momentum-space is

At intermediate and long range, the v™, v°7 and v'" interactions can be obtained

by m-meson and p-meson exchanges. The 7NN and pNN effective Lagrangians

are:
L _ sy 7
NN = —m—WT/W'YT?/)' wT ( )
Loxn = goun®| (1 = 2201, ) p,| - 7 (78)

where ¢, w and p are the 7" = 1/2 nucleon and the 7" = 1 pion and p-meson

fields, respectively. The Bjorken and Drell conventions are used for the ~-matrices
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and the metric tensor ¢°7 [66]. frnn, gonn and k, are the pseudovector 7NN,
the vector and tensor pNN coupling constants, respectively. For example, in
the CD-Bonn OBE model [2] the values for these couplings are: f2/4m = 0.075,
g§/47r = 0.84, k, = 6.1. By performing a non-relativistic reduction of the Feynman

diagram of Fig. 4(a), with 7- and p-meson exchange, one obtains:

v (k) = |vps (k) +[vr (k) 420, (k)]K* (030 ) = [vr (k) —v, (k)] S5 (k) | (3-75)  (T9)

2 2
TNN fw(k)
ve(k) = — 3m2 k2 +m2 (80)
2 2 2
gonn(L+Kp)? [ (k)
v(k) = -2 o k2p+m2’ (81)
p
£ (k)
— 2 P 82
Ups gpNNk2+m% ) ( )

and fr(k) (f,(k)) denotes TNN (pNN) monopole form factors as defined in

Eq. (71). In the CD-Bonn potential the cutoff parameters are A, = 8.61 fm !
and A, = 6.64 fm . By comparison of Eqgs. (72) and (79), we have:

va(k) = vps(k) = [T (k) — 20" (K)]/3 | (83)
vp(k) = oy (k) = [o7(k) + 0" (R)]/3 (84)
vos(k) = vys(k) = o7 (k) . (85)

Even though the AV14 and AV18 are not OBE models, the functions vpg(k)
and, to a less extent, vy (k) and vy g(k) projected out from their v, v, and v'"
components are quite similar to those of 7- and p-meson exchanges in Egs. (80)—
(82) (with cutoff masses of order 5 fm™'), as shown in Refs. [67, 68].

The “r-like” (PS) and “p-like” (V) currents are then obtained in two steps: first,
minimal substitution 0, — 0, +£1A, in the Lagrangians of Eqs. (77) and (78), and
in the free 7-meson and p-meson Lagrangians leads to the expressions (for m-like

as an example):

Lo = TN G000, (rx m)p (86)

™

Lony = —Au(mxo'm), . (87)
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Then, the PS and V MI two-body currents are calculated performing a non-

relativistic reduction of the Feynman amplitudes of Fig. 4(b).

@ —

FIG. 4: (a) OBE Feynman diagram representation; (b) Feynman diagram repre-
sentation of the two-body currents associated with meson-exchange. Solid, dashed
and wavy lines denote respectively nucleons, mesons and photons.

The momentum-space expressions for these currents are:
39 (ki ks PS) = BiGYL(¢2) (i x 7)),
vps(kj)oi(o; - k;) —vps(ki)oj(o - ki)

K~k
+k2 2

slvps(ki) —vps(kj)|(oi - ki) (o - k;)| ,  (88)

jg)(k“kj,\/) = —31G§(qi)(7‘z X Tj)z |:Uv(kj)0'i X (O'j X kj) — Uv(ki)O'j X (O'Z X kz)
vy (ki) —vv (k)
Py

el — sl (%9)

(ki — kj)(oi X ki) - (07 x kj)

Configuration-space expressions are obtained from

ig-x dk dk ikj-(r;—x) ,ik;-(rj—x ()
ng q;a /dxeq / ) me ( )e (e )Jz] (kuk],a) ) (90)

where a=PS or V. Techniques to carry out the Fourier transforms above are
discussed in Ref. [67].

We reemphasize: (i) the PS and V two-body currents have no free parameters
and, by construction, satisfy the continuity equation with the given realistic in-
teraction (here the AV14 or the charge-independent part of AV18 model); (ii) the
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continuity equation requires the same form factor be used to describe the electro-
magnetic structure of the hadrons in the longitudinal part of the current operator
and in the charge operator, while it places no restrictions on the electromagnetic
form factors which may be used in the transverse parts of the current. Ignoring
this ambiguity, the form factor G};(q2) is used in the PS and V currents operators,
in line with the “minimal” requirements of current conservation.

There are additional two-body currents associated with the momentum de-
pendence of the interaction, but their construction is less straightforward. A
procedure similar to that used to derive the PS and V currents has been gen-
eralized to the case of the currents from spin-orbit components of the interac-
tion [69]. It consists, in essence, of attributing these to exchanges of o-like and
w-like mesons for the isospin-independent terms, and to p-like mesons for the
isospin-dependent ones. The explicit form of the resulting currents, denoted as
SO, can be found in Refs. [68, 69]. The two-body currents from the quadratic
momentum dependence of the interaction are obtained by minimal substitution
Pi —DPi — 3 [G%(qi) + Gg(qi)nyz] A(r;), A(r;) being the vector potential, into
the corresponding components. In the case of the AV14 and AV18 model, the p?-
dependence is via L? and (L- o1 L- o2 + h.c.) terms, and the associated currents
are denoted respectively as LL and SO2 [67, 68].

We note that the SO, LL and SO2 currents are fairly short-ranged, and have
both isoscalar and isovector terms. Their contribution to isovector observables
is found to be numerically much smaller than that due to the leading PS (-
like) current. However, these currents give non-negligible corrections to isoscalar
observables, such as the deuteron magnetic moment and B-structure function [65].
Finally it is worth emphasizing that, while the Riska-prescription is not unique, it
has nevertheless been shown to provide, at low and moderate values of momentum
transfer, a satisfactory description of most observables where the isovector two-
body currents play a large (if not dominant) role, such as the deuteron threshold
electrodisintegration [65], the neutron and proton radiative captures on protons
and deuterons at low energies [65, 68], and the magnetic moments and form factors

of the trinucleons [13], as will be shown in Chapter 5.
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4.1.3 The Three-Body Exchange Current Associated with

S-wave Pion Rescattering

In this Subsection we describe the three-body exchange current which corresponds
to the main nonresonant two-pion exchange three-nucleon interaction. Although
this term is not included in the Urbana VIII and IX interactions, it should be
included in any complete three-nucleon interaction model, as it is implied by
effective Lagrangians for the pion-nucleon system. Ignoring this inconsistency, in
the present work we study the effects of the current operators associated with this
three-nucleon interaction.

The isospin odd “large” component of the S-wave pion-nucleon (7 N) scattering
amplitude at low energy and momentum transfer may be described by the effective
interaction [70]:

1 —
LixNN = —4721/)7“7' ST X O, (91)

Here f, is the pion decay constant (~93 MeV). This effective Lagrangian implies
the “Weinberg-Tomozawa” relation for the isospin odd combination of the 7N

S-wave scattering lengths ay, as:

2
)\2 = é (1 + %) (CLl - CL3) = % (%) s (92)

which agrees well with the experimental scattering length values. Combined with
the pseudovector TN N effective Lagrangian of Eq. (77), this effective Lagrangian

gives rise to the three-body interaction:

L 1 [ frvn ? o; - kiop - ki
Vo = —— ST el i
’ 4m7;2r ( M ) ijkgy:clicT TR T D; Dy,
i

diagrammatically shown in Fig. 5. Here we have defined P; = p! + p; p; and p;
being the initial and final momentum of nucleon ¢, respectively. The denominator
factors D; are defined as

D; =X} +m? . (94)
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FIG. 5: Feynman diagram representation of the three-nucleon two-pion exchange
interaction. Solid and dashed lines denote respectively nucleons and pions. The
dashed circle corresponds to the 7w NN vertex.

The derivative coupling in the Lagrangian of Eq. (91) leads to an electromag-
netic contact term, that can be constructed by minimal substitution, and has the

expression

Lrnyvy = _é%mu[@@' ) =Tl (95)

™

Together with the effective Lagrangians of Egs. (86) and (87), this procedure
gives rise to the following set of three-nucleon exchange current operators shown
in Fig. 6: (a) a contact current at the S-wave rescattering vertex, (b) two contact
currents at the two accompanying pseudovector 7NN vertices and (c) two pion
current terms.

The explicit expressions for these are correspondingly:

2
.];L]k(CI) = SLm?—lg (f;;VN> [T X (75 X T3) + 7 X (T X Tk)],
ik k :
RO Kl (gt k) - P 96)
L fann )’ (o k
) = gy (2 oy 25

{lo) 06— @ i+ S - [P, P

—kk[Pk—P]]—2mw+QP]]}+(Zﬁk), (97)
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FIG. 6: Feynman diagram representation of the three-nucleon exchange current
operators. Solid, dashed and wavy lines denote respectively nucleons, pions and
photons. The dashed circle corresponds to the 7wt NN vertex.

¢ i 1 (fann 2 (O'i'ki)(o'k'kk)ka‘—q
Jirla) = g (L2 o ) (e R B
{lo 06— )l + 5 - [P )

In these exchange current operators, the fractions of the total momentum transfer
q imparted to the three nucleons are denoted k; respectively, so that q = k; +ko+
k3. The denominator factors D; are defined in Eq. (94), while the denominator

factors D," are defined as
D/ =(q—k;)*+m? . (99)

The combined three-nucleon exchange current operator j* + j° + j¢ satisfies
the continuity equation with the three-nucleon interaction Vg of Eq. (93), These

two-pion exchange three-nucleon currents will be labelled as 77g in Chapter 5.
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4.1.4 Two-Body Charge Operators

While the MI two-body currents are linked to the form of NN interaction via the
continuity equation, the most important two-body charge operators are model de-
pendent and may be viewed as relativistic corrections. They fall into two classes:
the first class includes those effective operators that represent non-nucleonic de-
grees of freedom, such as nucleon-antinucleon pairs or nucleon-resonances, and
which arise when these degrees of freedom are eliminated from the state vector;
to the second class belong those dynamical exchange charge effects that would
appear even in a description explicitly including non-nucleonic excitations in the
state vector, such as the pmy and wmy transition couplings. The proper forms
of the former operators depend on the method of eliminating the non-nucleonic
degrees of freedom [65, 71, 72|. There are nevertheless rather clear indications for
the relevance of two-body charge operators from the failure of calculations based
on the one-body operator in Eq. (55) in predicting the charge form factors of the
three- and four-nucleon systems [13, 73], and the deuteron A-structure function
and tensor polarization observable [65].

The two-body model used in the present work consists of the 7-, p- and w-
meson exchange charge operators, as well as of the pry and wny charge tran-
sition couplings. The former are derived by considering the low-energy limit of
the relativistic Born diagrams associated with the virtual meson photoproduction
amplitude. The pmy and wny operators are the leading corrections obtained in a
non-relativistic reduction of the corresponding Feynman diagrams of Fig. 3. To
reduce their model dependence, the m- and p-meson-exchange charge operators,
the former of which gives by far the dominant contribution, are constructed using
the PS (m-like) and V (p-like) components projected out of the isospin-dependent
spin-spin and tensor terms of the interaction [73]. The resulting two-body op-
erators are denoted as PS and V, and are here obtained from either the AV14
or the charge-independent part of the AV18. The momentum-space expressions
of the PS, V, w, pmvy and wn~y charge operators, pg)(ki,kj;PS), pz(?)(ki,kj;\/),
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pg)(ki,kj;w), ppry (ki kj) and pyrq(ki, kj) respectively, are:

3
oy (ki ki PS) = —%UF{S(QZ)H'Tj+F1V(Qi)Tj,z} vps(kj)oi-qo; -k,

+ [Fls(qi)‘TZ “ T + Flv(qi)ﬂ’z] 'UPS(ki)Uz' . kl g q] 5 (100)

3
o7 (ki ki V) = o l [Ff(qi)ri T FIV(‘]Z)TJ’Z]
x vy (k;)(o; x q) - (05 x k;)
+ [Fig(fIi)Ti'Tj +F1V(qi)7i:z}

X Uv(ki)(O'j X q) . (O'Z X kl)] R (101)

2
9w
oy (ki kjsw) = ”Uﬁ@wrm+wmm4

8m3
. o X/:l?)%(;éx kj)fw(kj)
+ (B @) )+ B ()]
Lo Xk(;)j; (W(;Z x ki) fw(ki)] . (102)

_wangNN(l + Kp)
2mym,m

[ai ki(oj x k) - (ki x kj)
(k +m2)(k? +m?2)

o; kj(o; xk;) - (k; xkj)

(k2 + mg)(kf- +m2)

me(kia kj) =

Gmrv(qz) Ti " Tj

Fr(ki) fo(kj)

mmg%ﬂ, (103)

JrNNGuNN
pwwv(ki;kj) = - YT Gcmr'y(qli)
T w

o - ki(o; x k;) - (k; x kj)
e oy 1.0
(k7 +m2) (k7 +m2)

MMﬂ%ﬂ,um>
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where £}/ V(qi) are the standard Dirac and Pauli form factors, m is the nucleon
mass and vpg and vy are given in Eqs. (83) and (84). Coupling constants and
cutoff parameters are discussed in Subsection 4.1.2.

We note finally that in the pion (as well as vector meson) charge operators there
are additional contributions due to the energy dependence of the pion propagator
and direct coupling of the photon to the exchanged pion (p-meson). However,
these operators give rise to non-local isovector contributions which are expected
to provide only small corrections to the leading local terms. For example these
operators would only contribute to the isovector combination of the *He and 3H
charge form factors, which is anyway a factor of three smaller than the isoscalar.

Thus they are neglected in the present model.

4.1.5 A-Isobar Components in the Wave Functions: the

TCO Method
When A-isobar degrees of freedom are considered, the nuclear wave function is
written as
Unia=U(NNN-- )+ UO(NNA- )+ TO(NAA )+ -+ (105)

where W is that part of the total wave function consisting only of nucleons, the
term W) is the component in which a single nucleon has been converted into a

A-isobar, and so on. The nuclear two-body interaction is taken as
vij = V(NN — NN) + [v;;(NN — NA) + v;;(NN = AA)+He], (106)

where v;;(NN — NN) is the nuclear interaction studied in Chapter 2, and the
transition interactions v;;(NN — NA) and v;;(NN — AA) are responsible for
generating A-isobar admixtures in the wave function. The long-range part of v;;
is due to pion-exchange. In an effective Lagrangian approach, the 7 NA vertex

interaction is written as:

Lina = f”“@ Ty - 9,7+ H.c. , (107)

™
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where 1* is the isospin-spin 3/2 field of the A, T is the isospin-transition operator
which convert the nucleon into a A isobar, and f,ya is the 7N A coupling constant.
The non-relativistic reduction of the Feynman amplitudes in Fig. 7 leads to NN —
NA and NN — AA interactions v;;(NN — NA) and v;;(NN — AA) of the

form:
vii(NN = NA) = [0 (rij)ei - S; + o™ (rig) S| 7Ty, (108)
vii(AA = AA) = [ ()8, - S5 + o' () ST T Ty (109)
Here, S; is the spin-transition operator, and Sf' and S//" are tensor operators in

which, respectively, the Pauli spin operators of either particle ¢+ or j, and both

particles 7 and j are replaced by corresponding spin-transition operators. The

functions v/ (r), etc., are given by:
orafy _ Sfam
v’ (r) = ym 3 - O(.Z‘) , (110)
tra (ff)OC My ( 3 3 ) e’ 2
= — 1+ —-—+— 111
v (r) y— +x+x2 xC’(aj), (111)

where o = IL, III, 2 = mqr, (ff)a = frnv[rnva, favafana, for o = 11, 111,
respectively, and the cutoff function C'(z) = 1 — e **". In the Argonne vygg [77]

(AV28Q)) interaction, which contains explicit N and A degrees of freedom, frya =
(67/2/5) fxnn, as obtained in the quark model, and A = 4.09.

@) (b)

FIG. 7: Feynman diagram representation of the NN — NA and NN — AA
transition interactions due to one pion exchange. Solid, thick-solid, and dashed
lines denote nucleons, A-isobars, and pions, respectively.

The short- and intermediate-range parts of v;;, influenced by more complex
dynamics, are constrained by fitting NV scattering data at lab energy < 400 MeV

and deuteron properties [26], as earlier discussed in Chapter 2.
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Once the NN, NA and AA interactions have been determined, the problem is
reduced to solving the N-A coupled-channel Schrédinger equation. In principle,
at least for the A=3 systems, Faddeev and hyperspherical-harmonics techniques
can be used (and, indeed, Faddeev methods have been used in the past [74, 75]) to
this end, although the large number of N-A channels involved makes the practical
implementation of these methods difficult. A somewhat simpler approach consists
of a generalization of the correlation operator technique [76], which has proven
very useful in the variational theory of light nuclei, particularly in the context of
variational Monte Carlo calculations [4, 27]. In the transition correlation operator
(TCO) approach, as this method is known [25], the nuclear wave function is
written as

ST (1 + UigR)

1<j

Upin = v, (112)

where W is the purely nucleonic component, S is the symmetrizer, and the tran-
sition operators U5 convert NN pairs into NA and AA pairs. The latter are
defined as

TR NA AN AA

with U2 and UZ* given in Eqs. (108)-(109), where the functions v”* and v’

oTQ tTa

are replaced by transition correlation functions u?™® and u'"®, respectively, yet to
be determined. In the present study the W is taken from CHH solutions of the
AV14/UVIII or AV18/UIX Hamiltonians with nucleons only interactions, while
the transition correlation functions u?™® etc. are obtained solving the two-body
bound and low-energy scattering-state problem with the AV28Q) interaction. The
correlation functions u”™(r), etc. are shown in Fig. 8.

The validity of the approximation inherent to Eq. (112) was discussed at length
in the original work [25], and has been reviewed more recently in Ref. [13]. Here we
only note that: (i) since the correlation functions u®™(r), etc. are short-ranged
(see Fig. 8), they are expected to have a rather weak dependence on A; this should
allow us to use correlation functions obtained solving a two-body problem also for
processes involving three and four nucleons. (ii) The AV28Q) interaction provided

an excellent description of the NN database available in the early eighties, but
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FIG. 8: Transition correlation functions u®™/(r), u!™!(r), etc. obtained for the
AV28Q model [77], and perturbation theory equivalents u?™"FT(r) w!THPT(y)
etc.

, U

’

no attempt has been made to refit this model to the more recent and much more
extensive Nijmegen database [78].
We finally note that the normalization of the full wave function Wy, in the
TCO approach can be written:
(Unia|Wyia) = (U1 + S[205NUAY + U5ATURA)
i<j
+ Y WANTURY + UNATUNAT WY 4L, (114)
i<j ki
where we have retained two- and three-body contributions. The wave function
normalization ratios (Uyya | Wyia)/(¥ | ¥), obtained for the bound three- and
four-nucleon systems, are listed in Table V. Thus, the probability Px of A-
components in the nuclear wave function is about 2 % and 6 % in three- and four-

body nuclei, respectively. As a comparison, P = 0.5 % in the deuteron [26, 77].
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TABLE V: The wave function normalization ratios (W a |Unia)/(V|¥) ob-
tained for the bound three- and four-nucleon systems, when the TCO calculation
is based on the AV28(Q) interaction. The purely nucleonic CHH wave functions
| U) correspond to the AV18/UIX Hamiltonian model.

Model 3H 3He ‘He
AV28Q 1.0238 1.0234 1.0650

The more traditional way of estimating the importance of the A-isobar degrees
of freedom in electroweak observables, is the so-called first-order perturbation
theory (PT). In such an approach, the A-isobar admixtures in the wave functions

are generated via

S S [0ij(NN = NA) +v;;(NN — AN)| W, (115)
m—=Mma j;

g@ Q(TIWJA)Z;%(NN — AA)U | (116)
where the A-isobar kinetic energy contributions in the denominators of Egs. (115)

and (116) have been neglected (static A approximation).
When compared to the TCO approach, the PT approximation produces NA
and AA admixtures that are too large at short distances, and therefore leads to a
substantial overprediction of the effects associated with A isobars in electroweak

observables [25], as can be seen in Fig. 8.

4.1.6 Electromagnetic A-Currents

In a full description in which also A-isobar degrees of freedom are included, the
one-body current is written as
= Y J@B-B), (117)
B,B'=N,A
where j;(q; N — N) is the nucleonic current component given in Eq. (54) and

. i iqr
jilggN = A) = _%GvNA(QZ)eq ‘qx ST, , (118)
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Gl A= A) = —ﬁGﬂ,AA(qﬁ)eiq'”q x B;(1+6;.) . (119)
Here ¥ (@) is the Pauli operator for the A spin 3/2 (isospin 3/2), and the ex-
pression for j;(q; A — N) is obtained from that for j;(q; N — A) by replacing the
transition spin and isospin operators by their Hermitian conjugates. The NA-
transition and A electromagnetic form factors, respectively G,na and Gyaa, are

parametrized as

Grvald) = — — (120)
(1+q2/A%a0) 1+ 2/A%az
HyAA
Goanlg)) = joveane B (121)
(1+qu/AAA)

The NA-transition magnetic moment /i,y is taken equal to 3 n.m., as obtained

from an analysis of 7NV data in the A-resonance region [79]; this analysis also gives
Ayay = 0.84 GeV and Ayao = 1.2 GeV. The value used for the A magnetic
moment fi,aa is 4.35 n.m. by averaging results of a soft-photon analysis of pion-
proton bremsstrahlung data near the A** resonance [80], and Aaa = 0.84 GeV
as in the dipole parametrization of the nucleon form factor. In principle, N to A
excitation can also occur via an electric quadrupole transition. Its contribution,
however, has been ignored, since the associated pion photoproduction amplitude
is found to be experimentally small at resonance [81]. Also neglected is the A
convection current.

The N A-transition two-body currents are written as

.(2) o / / . . ! ’
Jij (@) = ZBi,Bj:N,AZB;,B;:N,A jij(q; BiB; — B;B;) , (122)

where the prime over the summation symbols indicates that terms involving more
than a single A have been neglected in the present study. The NN — NN two-
body terms have already been discussed. The two-body terms involving at most

a single A are explicitly given by
Jijf(@ NN = NA) = (1; x Tj), [ (04(S; - 1) 4™ + (0 - 1) ;€' | A(riy)
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where r;; = r; —r;, R;j = (r;+71;)/2, and the functions h(r) and h(r) are defined,

respectively, as

_ Jannfana) 1 .
7 _ f7l' fﬂ' A 1 +% —izqrr, ,—rL(z
h(r) = (% mz dz e 1#aTe L) (125)

with £ = m,r and L(z) = [m2 + ¢*(1/4 — 2%)]*/2. Terms explicitly proportional
to q in Eq. (123) have been dropped, since in applications only the transverse
components of j(q) occur. The three terms in Eq. (123) are associated with
diagrams (a), (b) and (c) in Fig. 9, respectively, and can be obtained from the
well known expression of the two-body nucleonic currents due to pion-exchange

by replacing o; and 7; with S; and T, respectively.

FIG. 9: NA-transition two-body currents due to pion exchange.

To account for the hadron compositeness, form factors must be introduced at
the TNN and mNA vertices. In the case of v;;(NN — NA) interaction, an r-
space Gaussian cutoff has been used. However, for the j(NN — NA) above it has
been found convenient to introduce monopole form factors given in Eq. (71) with
a = m and A,=4.56 fm~!. This value for A, is consistent with that obtained from
the tensor component of v;;(NN — NA). Finally, the expression in Eq. (123) is

multiplied by the isovector form factor G;(q;).

4.2 The Weak Transition Operators

We describe here the model for the weak current and charge operators. As for the
electromagnetic case, in the first part we discuss the model when only nucleonic
degrees of freedom are included. In the second part we describe the A-isobar

contributions.
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4.2.1 The Nuclear Weak Current and Charge Operators

The nuclear weak current and charge operators have polar-vector/scalar (V) and

axial-vector/pseudoscalar (A) components

jr(@) = je(q; V) +je(q;A) (126)
p+(@) = pi(q;V)+ps(q;A), (127)

where q is the momentum transfer, and the subscripts £ denote charge raising
(+) or lowering () isospin indices. Each component, in turn, consists of one-,

two-, and many-body terms that operate on the nucleon degrees of freedom:

i@a) = i (@a) + i (ga)+... (128)
g 1<J

p@a) = S o (@a)+ S o0 (@a) + ..., (129)
g 1<J

where a=V, A and the isospin indices have been suppressed to simplify the nota-
1) (1)

tion. The one-body operators j,” and p, ’ have the standard expressions obtained

from a non-relativistic reduction of the covariant single-nucleon V and A currents,

and are listed below for convenience. The V-charge operator is written as

P (@5 V) = (@ V) + pRe(as V) (130)
with
PR (@ V) = 7ip 4T (131)
(2p—1 s
Pz(,lf)ac(CI; V) = _I%Ti,i q- (U'i X Pz‘) e (132)

The V-current operator is expressed as
1 v

. ig-r; . lu iq-r;
ng)(q;\/):% i {pi, 1 ’}—I%Ti,iqxo'ieq L, (133)

where p is the isovector nucleon magnetic moment (z’ = 4.709 n.m.). Finally,

the isospin raising and lowering operators are defined as

Tix = (Tig £175,)/2 . (134)
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The term proportional to 1/m? in pg}éc(q; V) is the well known [52, 53] spin-orbit

relativistic correction. The vector charge and current operators above are simply
obtained from the corresponding isovector electromagnetic operators of Eqs. (54)-
(59), by the replacement 7;,/2 — 7 1, in accordance with the conserved-vector-
current (CVC) hypothesis. The ¢,-dependence of the nucleon’s vector form factors
(and, in fact, axial-vector form factors below) has been ignored, since in this work
we are interested in weak processes involving very small momentum transfers.
For this same reason, the Darwin-Foldy relativistic correction proportional to
¢?/(8m?) in pg}éc(q; V) has also been neglected.
The A-charge operator is given, to leading order, by

P (@A) = _29—:711 Tix o {pi, €97} (135)

while the A-current operator considered in the present work includes leading and

next-to-leading order corrections in an expansion in powers of p/m, i.e.

o1 o(1 o1
i@ A) = jRa(a A) + i Rc (@A) | (136)
with
jz(,llle(q; A)=—gaTis o (137)
: ga iq-r; iq-r;
Jz(,lf)iC(q;A) = a2t (Ui{P?a e} —{oi-pipi, €}
1 _— 1 e ) iars
— §O'i'Q{Pi; e 1}—501{0'1"1)1', et +iq x p; e
- 3 P riqo - qel (138)
mm“

The axial coupling constant g4 is taken to be [82] 1.265440.0042, by averaging
values obtained, respectively, from the beta asymmetry in the decay of polarized
neutrons (1.2626+0.0033 [83, 84]) and the half-lives of the neutron and superal-
lowed 0T — 07 transitions, i.e. [2ft(0T — 07)/ft(n) — 1]=1.26814+0.0033 [82].

The last term in Eq. (138) is the induced pseudoscalar contribution (m, is the
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muon mass), for which the coupling constant gp is taken as [85] gp=-6.78 g4.
Note that in the limit ¢=0, the expressions for pg}l\)m(q; V) and jg}l\)m(q; A) reduce
to the familiar Fermi and Gamow-Teller operators.

In the next five Subsections we describe: (i) the two-body V-current and V-
charge operators, required by the CVC hypothesis; (ii) the two-body A-current
and A-charge operators due to - and p-meson exchanges, and the pr mechanism;
(iii) the V and A current and charge operators associated with excitation of A-

isobar resonances [14].

4.2.2 Two-Body Weak Vector Current and Charge Oper-
ators
The weak vector (V) current and charge operators are derived from the corre-

sponding electromagnetic operators by making use of the CVC hypothesis, which

for two-body terms implies

1 (2 : (2
5 (it 7ia)  JGL(@7)| = Hean Jh(@ V) (139)
where jg,)z(q; 7) are the isovector (charge-conserving) two-body electromagnetic

currents, and a,b = x,y, 2z are isospin Cartesian components. A similar relation
holds between the electromagnetic charge operators and its weak vector counter-
parts. The charge-raising or lowering weak vector current (or charge) operators

are then simply obtained from the linear combinations
i@ V) =30 V) £ 130, (V) - (140)

Using Eq. (139), it is easy to see that the two-body vector current and charge
operators are simply obtained from the corresponding isovector electromagnetic
terms by making the substitutions 7,, — 7,4+ and (7; X 7;), = (7; X T;)+ in
Eqgs. (67)-(68), (88)-(89) and (100)-(101). Here we have defined

(Ti X Tj)x = (75 X Tj)p £i(Ti X T5)y - (141)
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Although our model for the MI electromagnetic current operator includes PS
(“m-like”), V (“p-like”), SO, LL and SO2 currents, as already discussed in Sec-
tion 4.1.2, we included in the weak vector current operator only the PS and V
components, which are expected to give the leading contributions, as already ver-
ified in the electromagnetic case.

Among the MD terms of the weak vector current operator, the wny contribu-
tion has been found negligible, while the A-currents have been found to give the
largest MD contribution, which, however, is still small respect to that due to the
leading MI terms. For the A-contributions, see Subsection 4.2.5.

Finally, the weak vector charge operator consists only of the “m-like”and “p-
like” terms, already discussed in Section. 4.1.4, which were found to give the largest

two-body contributions.

4.2.3 Two-Body Weak Axial Current Operators

In contrast to the electromagnetic case, the axial current operator is not con-
served. Its two-body components cannot be linked to the NN interaction and,
in this sense, should be viewed as model dependent. Among the two-body axial
current operators, the leading term is that associated with excitation of A-isobar
resonances. We defer its discussion to Section 4.2.5. In the present Section we
present the two-body axial current operators due to m- and p-meson exchanges
(the 7A and pA currents, respectively), and the pr-transition mechanism (the
pmA current). Their individual contributions have been found numerically far less
important than those from A-excitation currents in studies of weak transitions
involving light nuclei [12, 14, 51]. These studies [12, 14, 51] have also found that
the 7A and pA current contributions interfere destructively, making their com-
bined contribution almost entirely negligible. These conclusions are confirmed in
the present work.

The A, pA, and pmA current operators were first described in a systematic
way by Chemtob and Rho [55]. Their derivation has been given in a number

of articles, including the original reference mentioned above and the more recent
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review by Towner [86]. Their momentum-space expressions are :

D0k dimA) = 2 (o)) ok Ko Ky
+ %Tj,ivw(kj) (@+ioi xPi)oj-kj+ (1<), (142)
[(2) : _ 4 i
Jig (ki kjs pA) = 570 (i X 75)2 0 (k) [a0:- (0 x X)) +i(o) x k;) x P;

~[os x (0 x ;)] x K]
+ %Tj,i v, (k) [(U'j x k) x k; —ilo; x (0 x kj)] % Pi}
e (143)

fp(kz) fw(kj)

.(2) . _ ga o
Jij (ki Ky prA) - = —Egp(TiXTj)ikzg+m%k]2+m% ik
x[(14 rky) 03 x ki = iP] + (i = j) (144)

where the functions v, (k) and v,(k) have already been defined in Eqgs. (80)—(81),
and the monopole form factors are given in Eq. (71).

Note that the values used for the 7NN and p/N N coupling constants and cutoff
masses are the following: f7?/4m = 0.075, g2/4m = 0.5, K, = 6.6, Ay = 4.8 fm™ ',
and A, = 6.8 fm~'. The p-meson coupling constants are taken from the older
Bonn OBE model [87], rather than from the more recent CD-Bonn interaction [2]
(97/4m = 0.81 and £, = 6.1). This uncertainty has in fact essentially no impact on
the results reported in the present work for two reasons. Firstly, the contribution
from pA currents, as already mentioned above, is very small. Secondly, the com-
plete two-body axial current model, including the currents due to A-excitation
discussed below, is constrained to reproduce the Gamow-Teller matrix element
in tritium [-decay by appropriately tuning the value of the NA-transition axial
coupling g%. Hence changes in g, and «, only require a slight readjustament of

the g7 value.

4.2.4 Two-Body Weak Axial Charge Operators

The model for the two-body weak axial charge operators adopted here includes

a term of pion-range as well as short-range terms associated with scalar- and
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vector-meson exchanges [88]. The experimental evidence for the presence of these
two-body axial charge mechanisms rests on studies of 07 = 0~ weak transitions,
such as the processes '*N(07,120 keV)—!0(0") and *O(0")+p —1N(0,120
keV)+v,, and first-forbidden [-decays in the lead region [89]. Shell-model cal-
culations of these transitions suggest that the effective axial charge coupling of
a bound nucleon may be enhanced by roughly a factor of two over its free nu-
cleon value. There are rather strong indications that such an enhancement can
be explained by two-body axial charge contributions [88].

The pion-range operator is taken as

e T rA) — 194 (o L k) TN 45
Pz‘j( i) Kj; T )__IW(TZXT])imUZ' i+ =7), (145)

™

where f, is the pion decay constant (f, ~93 MeV), k; is the momentum transfer
to nucleon 4, and f (k) is the monopole form factor given by Eq. (71) with A,=4.8
fm~!. The structure and overall strength of this operator are determined by soft
pion theorem and current algebra arguments [90, 91], and should therefore be
viewed as “model independent”. It can also be derived, however, by considering
nucleon-antinucleon pair contributions with pseudoscalar 7N coupling.

The short-range axial charge operators can be obtained in a “model-
independent” way, consistently with the NN interaction model. The procedure
is described in Ref. [88], and is similar to the Riska-prescription used to derive
the “model-independent”electromagnetic currents. Here we consider the charge
operators associated only with the central and spin-orbit components of the inter-
action, since they are expected to give the largest contributions, after the p(® (7 A)
operator above. This expectation is in fact confirmed in the present study. The

momentum-space expressions are given by

pg) (kz, kj; SA) = anilﬂ [Ti,i Ws(kj) + Tj+ WST(]C]')] g; - Pz + (l = ]) s (146)
(2) . g4 —v I .
pij (ki kjvA) = = (1207 (k)) + 754 77 (ky)] [0 - P+ (0 X 0) - Ky
i A i x 1) T () ok + (=) (147)

4 m?
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where P; = p; + p}, and
5o(k) = 4 / dr 2 jo(kr) TO(r) | (148)
0

with a=s, s7, v, and v7. The following definitions have been introduced

vo(r) = ZUC(T) + m72 /roo dr'r' [Ub(r') — %vbb(r')]

) = )= [ o) o) (149)
where v¢(r), v®(r) and v*(r) are the isospin-independent central, spin-orbit, and
(L-S)% components of the AV14 or AV18 interactions, respectively. The definitions
for 757 (r) and T¥7(r) can be obtained from those above, by replacing the isospin-
independent v¢(r), v°(r) and v"(r) with the isospin-dependent v*7(r), v*"(r) and

Ubb’r (7")

4.2.5 Weak A-Contributions

In this Subsection we review the weak current and charge operators associated
with excitation of A isobars. A discussion of the TCO method used to include
explicitly A-isobar degrees of freedom in the wave functions has been given in
Subsection 4.1.5.

The axial current and charge operators associated with excitation of A isobars

are modeled as

BN@N = AA) = —gi Ta ST (150)
jz(l)(qs A= ANA) = —7,0;: 5697 (151)
and
Pz(l)(CI; N = AJA) = ~ 4 T;+S;i - p; 9" (152)
ma
p(q A = AA) = ~ a4 Oix % - {pi, €97}, (153)
2 ma

where ma is the A-isobar mass, ¥ (@) is the Pauli operator for the A spin
3/2 (isospin 3/2), and 7; + and ©; 1 are defined in analogy to Eq. (134). The
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expression for jgl)(q;A — N,A) (pl(-l)(q;A — N, A)) is obtained from that for
jgl)(q; N — A A) (pgl)(q; N — A, A)) by Hermitian conjugation and replacing q
with —q.

The coupling constants g% and g, are not well known. In the quark-model,
they are related to the axial coupling constant of the nucleon by the relations g% =
(63/2/5)g4 and G, = (1/5)g4. These values have often been used in the literature
in the calculation of A-induced axial current contributions to weak transitions.
However, given the uncertainties inherent to quark-model predictions, a more
reliable estimate for g7 is obtained by determining its value phenomenologically
to reproduce the measured Gamow-Teller matrix element in tritium S-decay [12].
This procedure is discussed in Chapter 7.

The N — A and A — A weak vector currents are modeled, consistently with
the CVC hypothesis, as

*

@ N = AV) = —il T, qxs; e (154)
m

+(1) A A _ _-i ) 3. elaTi 1

Ji (q, — ,V) 112m92,iqx i€ ’ ( 55)

where ;1" = pyva = 3 n.m. and I = p,aa = 4.35 n.m., as given in Section 4.1.6.



Chapter 5
Trinucleon Form Factors

In the previous Chapters, we have described models for the nuclear Hamiltonian,
practical computational methods for the accurate numerical calculation of wave
functions, and models for the electroweak current and charge operators. A thor-
ough testing of these models can be performed studying observables for which
experimental results are available. Electron-scattering, in particular, provides an
excellent tool for probing the electromagnetic structure of nuclei over a wide range
of momentum transfer.

In this Chapter, we present results for the trinucleon elastic form factors,
magnetic moments and magnetic and charge radii. These observables are defined
in Section 5.1, while the Monte Carlo technique used to calculate them is reviewed
in Section 5.2. Finally, in Section 5.3 we discuss our results, comparing them with

the available experimental data.

5.1 Electron-Scattering from Nuclei

In the one-photon-exchange approximation the electron-scattering cross section
involving a transition from an initial nuclear state |.J;) of spin .J; and rest mass

m; to a final nuclear state |.J;) of spin Jf, rest mass m; and recoiling energy E;

95
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can be expressed in the laboratory frame as [1, 52, 92, 93]

d
o = oy [t [0, FEa) +UTF%(q)] , (156)
where
acost/2 \?
= | ———— 157
oM (2@- sin29/2> ’ (157)
2\ 2
qu>
v, = (& , 158
v = (5 (158)
¢
_ 2 i
vr = tan §+2—q2 , (159)
and the recoil factor f.e. is given by
€f — € cost) 2¢; . 50
e =14+ "——— ~ 14+ — — . 160
fi + B + - sin” o (160)

The electron kinematical variables are defined in Fig. 10, # is the angle between
k; and k;, and qz is defined in Eq. (60). The last expression for f. in Eq. (160)

FIG. 10: Elastic scattering in one-photon exchange approximation. Solid, thick-
solid and wavy lines denote respectively electrons, hadrons and photons.

is obtained by neglecting terms of order (w/m;)? and higher, where

2 2 2
W Gy mi (161)
m; 2m?
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The nuclear structure information is contained in the longitudinal and transverse
form factors denoted, respectively, by F.(¢) and Fr(¢). By fixing ¢ and w and
varying 6, it is possible to separate Fy(q) from Fr(q) in a procedure known as
a Rosenbluth separation. Alternatively, by working at §=180° one ensures that
only the transverse form factor contributes to the cross section and so may be
isolated (in this case, we observe that the combination oy, tan?6/2 — (a/2¢;)? as
§ — 180°, and is therefore finite in this limit).

The longitudinal and transverse form factors are expressed in terms of reduced
matrix elements of Coulomb (C'), transverse electric (E), and transverse magnetic
(M) multipole operators as [1, 52, 92, 93]

1 o

FH0) = g7 2 IC@IAE (162)
F2(q) = 2Ji1+1§{|<Jf||EJ<q>||Ji>|2+|<Jf||MJ(q>||JZ->|2 . (163)

where we have defined
Coule) = / dx js(qz) Yo (R)p(x) (164)
Pale) = ¢ [ x| vm(qmv%l(k)}-j(x), (165)
Mile) = / dx s (g2) Y31 (%) - () . (166)

with

Y. (%) = >0 (LM, 1p[JM)Yim, (%) &, (167)

& = &, and &y, = F(é, +ie,)/v2. Here p(x) and j(x) are the nuclear charge
and current density operators, and j;(gx) are spherical Bessel functions. The
reduced matrix elements in Eqgs. (162)—(163) are related to the matrix elements
of the Fourier transforms p(q) and j(q), introduced in Chapter 4, via [1, 52|:

JM JiM;) = 4r i’y 7, (6
< f f|p(q)| Z Z JM q \/m

J=0 M=

x (Jf||CJ(q)||Ji> ) (168)
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o0 J
(JrMylex(@) -§(@I M) = V23" 37 i'V2J +1D5 (=6, 04, ¢,)
J=1M=—J

,/2Jf+1

MM @I + I E@)] L (169)

X

where A = +1, é,(q) are the spherical components of the virtual photon transverse
polarization vector, and the Dy,, are standard rotation matrices [93, 94]. The
expressions above correspond to the virtual photon being absorbed at an angle
0,4, ¢4 with respect to the quantization axis of the nuclear spins, the z-axis. They
can be obtained expressing the states quantized along Z as linear combinations of

those quantized along q:
|JJz>2 = Z Dj;Jz(_qﬁqa 9(17 ¢q) |JJ;>61 . (170)
JI

The more familiar expressions for the multipole expansion of the charge and
current matrix elements are recovered by taking q along the Z-axis, so that
Yin(@) = Oar0 V2T + 1/V4Am and DYy (=g, 04, Bg) — O aa-

It is useful to consider the parity and time-reversal properties of the multipole
operators [1, 52]. The scalar and polar vector character of, respectively, the charge
and current density operators under parity transformations implies that C';3; and

Ejyr have parity (—1)7, while My, has parity (—1)/*!

. The resulting selection
rules are m;mp = (—1)7 (mm; = (=1)7*!) for Coulomb and transverse electric
(magnetic) transitions, where m; and 7, are the parities of the initial and final
states.

The Hermitian character of the operators p(x) and j(x) as well as their trans-
formation properties under time-reversal, p(x) — p(x) and j(x) — —j(x), can be

shown to lead to the following relations:
HICH @I Ty = (1) (TCa(@)] Ty (171)
(TR Es /M) Ty = (=) TN E /My ()] Ty) - (172)

These relations along with the parity selection rules stated above require, in par-

ticular, that elastic transitions, for which J;=J;, can only be induced by even-J
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Coulomb and odd-J magnetic multipole operators.

In the case of elastic scattering from the *H and ®*He nuclei, for which J; =
Jr = 1/2, the only contributing multipoles are Cy and M;, and from Eqgs. (162)
and (163), we obtain:

Fi(q) =

Fi(q) =

GG (173)

NN NN

G5 P (174)

From Eqgs. (168) and (169), we have that

[ GIGIZ P = o [{(alpa) o) (173)
[GIMI P = — (W liaa@)le) P (176)

where we have set q along the spin-quantization axis (the z-axis), ¥, ,_ denote
the normalized trinucleon wave functions with total angular momentum projection
J, = £1/2, respectively, and j,(qz) is the xz-component of the current operator.

Finally it can be shown [1, 93] that, for ¢ — 0
A

Gloly) = —=. ()
GIn@Iz) = J=gk (179

where p is the trinucleon magnetic moment in nuclear magnetons. Therefore we

obtain for ¢ — 0

A
F - —, 179
1 qup
F - = 180
T(q) \/% om ( )
The magnetic and charge form factors are then defined as
Var
Fol(q) = TFL(Q) ; (181)
2m
FM(q) = VvV 27T—FT((]) , (182)
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so that Fyy (g = 0) = 1. From Eqgs. (173)-(176), (181) and (182), we obtain that

Fy(g) = 277”3@ | ala2) | T_) | (183)
Fela) = 500 | pla2) | 0.) (184)

The charge and magnetic radii (rZ) and (r3,) are finally defined by the relation

q2<7%/M>

o (185)

which can be easily obtained from the the definitions of the form factors in the
limit ¢ — 0, keeping the leading and next-to-leading order term in the expansion
of the Bessel functions in Eqs. (164)-(166). The charge and magnetic radii as

defined above are proportional to the “slopes”of the form factors at ¢ = 0.

5.2 Calculation Details

The matrix elements of the charge and current operators of Eqs. (183) and (184)
are evaluated, without any approximation, by Monte Carlo integration based on
the Metropolis et al. algorithm [95]. We describe here the main steps of the
method. For more details see Refs. [67, 73, 76]. A proof of the Metropolis algo-
rithm is given in Ref. [93]. We proceed as follows: (i) from a given starting spatial
configuration of the three nucleons Rg = (ry,rs,r3), we generate randomly the
configuration R' = (v, r}, r}). (ii) The probability density W (R) for any given R
is defined as
1

WR) o 5 (¥ (R) ¥ (R)) + (VL(R) ¥, (R))) (186)

where the notation (---) implies sums over the spin-isospin states of the wave
functions W, (iii) We calculate the ratio
W(R/)
W(Ro) ’

r (187)

and generate a random number a between 0 and 1. If a < r, then R’ is ac-

cepted, otherwise is rejected. (iv) The procedure is repeated N times and the
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accepted spatial configurations are stored. (v) For each of them, the state vectors
Jz(qz) | W_) and p(qz) | ¥ ) are calculated, by performing exactly the spin-isospin
algebra, as described in Refs. [67, 73, 76]. The momentum-dependent terms in

Jz(qz) and p(gz) are calculated numerically; for example

Vio¥(R) (W(R+di0) — V(R —054)] , (188)

" i

where 0; o is a small increment in the 7; , component of R. (vi) The spatial integral

is then given by (for j,(¢z), as an example)
/dr1 dry drs \Ifi(rl ror3) jo(qz)V_(r;rors) ~
LS L (R, () V_(R,)) (189)
AT e — x VA — )
Np:l W(Rp) - P Jald P

where the spin-isospin dependence is understood.

The statistical error is proportional to 1/ v/N. Typically, in the trinucleon form
factor calculation reported here, 400,000 configurations are enough to achieve a
relative error of a few % at low and moderate values of momentum transfer ¢ (¢ <
5 fm™1), increasing to ~30% at the highest g-values.

The evaluation of the matrix element of Eq. (183) when also A-isobar degrees
of freedom are considered, is more complicated. In this case, it is convenient to
expand the full wave function Uy x s, as

Uniag, =V, +Y UG, +... (190)
i<j

and write, in a schematic notation:

(WUniarli[¥niai) = (Pr|j(Nonly) [Wi) + (¥r|j(A) | W) , (191)

where j(N only) denotes all one- and two-body contributions to j(q) which only
involve nucleon degrees of freedom, i.e., j(N only) = j(N — N) + j@(NN —
NN). The operator j(A) includes terms involving the A-isobar degrees of
freedom, associated with the explicit A currents jO(N = A), jO(A = A),
j(2)(NN = NA), and with the transition operators U%R introduced in Subsec-
tion 4.1.5. The operator j(A) is illustrated diagrammatically in Figs. 11 and 12.
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The terms (a)—(g) in Fig. 11 and (a)-(f) in Fig. 12 are two-body current oper-
ators. The terms (g)—(l) in Fig. 12 are three-body current operators, while the
terms (f) and (h)—(j) in Fig. 11 are to be interpreted as renormalization correc-
tions to the “nucleonic” matrix elements (¥, | j(Nonly) | ¥;), due to the presence

of A-admixtures in the wave functions.

o

(@ (b) (©
F-x- X X
(e) ) (@)

X1 b-x- -
(h) @ @

FIG. 11: Diagrammatic representation of operators included in j(A) due to one-
body currents (N — A), jMW(A — A), etc., transition correlations UN4,
UA2, and corresponding Hermitian conjugates. Wavy, thin, thick, dashed and
cross-dashed lines denote photons, nucleons, A-isobars and transition correlations

’ A
UBB and UPB | respectively.

There are, however, additional, connected three-body terms in j(A) that are
neglected in the present work. A number of these are illustrated in Fig. 13. Their
contribution is expected to be significantly smaller than that from the terms in
Figs. 11 and 12 involving transition correlations between two particles only, of the
type UZ-];?B’T Ui’jB,, but comparable to that from the three-body terms in Fig. 12
having Ui?B,T UﬁgB,. These have been found to be very small.

The terms in Fig. 11 are expanded as operators acting on the nucleons’ co-
ordinates. For example, the terms (a) and (e) in Fig. 11 have the structure,

respectively,

() = 5(A->NUZY, (192)
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X T X
f | |
(a) (b) (©) (d)
>< L ,5, - >< e
g F--- B g
(e) ® @ (h)
X X g -4

(0] 0 (k) o

FIG. 12: Diagrammatic representation of operators included in j(A) due to two-
body currents ;@ (NN — NA), ;@ (NN — AN), etc., transition correlations
UNA UA2, and corresponding Hermitian conjugates. Wavy, thin, thick, dashed
and cross-dashed lines denote photons, nucleons, A-isobars and transition corre-

/ A
lations UBP and UP® | respectively.

() = UANT A s Aa)yupY, (193)

which can be reduced to operators involving only Pauli spin and isospin matrices

by using the identities

5 :
St.AS.B = gA-B—éa-(AxB), (194)
St.A¥X-BS-C = giA-(Bxc)—%a-AB-c
1 4
—EA-BC-O'—FgA'(B'O')C, (195)

where A, B and C are vector operators that commute with o, but not necessarily
among themselves.

While the terms in Fig. 12 could have been reduced in precisely the same
way, the resulting expressions in terms of o and 7 Pauli matrices become too
cumbersome. Thus, for these it was found to be more convenient to retain the

explicit representation of S (ST) as a 4 x 2(2 x 4) matrix
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CY (b) ©

FIG. 13: Diagrams associated with connected three-body terms, which are ne-

glected in the present work. Wavy, thin, thick, dashed, cross-dashed and dotted
’ 1t
lines denote photons, nucleons, A-isobars, transition correlations U?® and UB? |

and the two-body current ;@ (NN — NN), respectively.

—e_ 0
24 1 A
S — \/ge0 56—
_1la 24 ’
\/§e+ 3€0
0 e,

where é; = F(x £1y)/V2, & = 2, and €, = (—)*é_, and derive the result
of terms such as (a)+(c)+(e):Ui]}mT ji(f)(NN — NA) on the state |¥) by first
operating with j© and then with UNAT The Monte Carlo evaluation of the
matrix element is then performed with methods similar to those described above.

We finally note that perturbation theory (PT) estimates of the A-isobar ex-
citation currents in photo- and electro-nuclear observables typically include only
the contribution from single N = A transitions (namely diagrams (a) and (b)
in Fig. 11) and ignore the change in the wave function normalization. In par-
ticular, the PT expressions for the three-body terms in Fig. 12, diagrams (g)-(1)
along with those in which the first and third legs are exchanged, can easily be
shown to satisfy current conservation with the Fujita-Miyazawa two-pion exchange
three-nucleon interaction (27r'TNI) [37] described in Chapter 2, which provides the

“long-range” component of the three-nucleon interaction.
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5.3 Results

In this Section we present results for the magnetic moments, charge and magnetic
form factors and radii of ®H and *He. In Subsection 5.3.1 we present the results
obtained when only the nucleonic degrees of freedom are considered, while in
Subsection 5.3.2 we present the results obtained by including also the A-isobar
degrees of freedom. The nuclear ground states are described by the PHH wave
functions obtained from the AV18/UIX Hamiltonian model. A discussion of the

electromagnetic current and charge operators has been given in Chapter 4.

5.3.1 Nucleons Only

We present here our results for the magnetic and charge form factors when purely

nucleonic wave functions are used.

The Magnetic Form Factors

The current operator includes, in addition to the one-body current in Eq. (54),
the model-independent (MI) two-body currents PS, V, SO, LL and SO2, ob-
tained from the charge-independent part of the AV18 interaction, the model-
dependent (MD) pry and wry two-body currents, and finally the local terms of
the mmg three-body current associated with the S-wave two-pion exchange three-
nucleon interaction of Eq. (93). Because of destructive interference between the
S- and D-state components of the wave function, the one-body predictions for
the H and *He magnetic form factors (MFF) have distinct minima at around
~3.5 fm ! and ~2.5 fm !, respectively, in disagreement with the experimental
data [96, 97, 98, 99, 100, 101, 102, 103, 104, 105], as shown in Fig. 14. Inclusion
of the contributions from the two- and n7g three-body currents shifts the zeros
in the calculated MFF to higher g-values. While the experimental *H MFF is
in good agreement with theory over a wide range of momentum transfers, there
is a significant discrepancy between the measured and calculated values of the
3He MFF in the region of the first diffraction minimum. As pointed out already
in Chapter 4, this calculation is affected by the rather poor knowledge of the
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neutron electromagnetic form factors. In Fig. 14 we show also the results ob-
tained with the Gari-Kriimpelmann (GK) parametrization [106] of the nucleon
electromagnetic form factors, to check whether this discrepancy between theory
and experiment persists when different parametrizations of the nucleon electro-
magnetic form factors are used. No improvement in describing the experimental
results has been found. To fully investigate this aspect, however, the most recent
results for the nucleon (in particular proton) electromagnetic form factors [107]

should be considered.

— 1N
—— (1+2N
—— TOT-N(D)
— -~ TOT-N (GK)

FIG. 14: The magnetic form factors of >H and ®*He, obtained with single-nucleon
currents (1-N), and with inclusion of two-nucleon current ((1+2)-N) and 7rg
three-nucleon (TOT-N(D)) current contributions, are compared with data (shaded
area) from Amroun et al. [105]. Theoretical results correspond to the AV18/UIX
PHH wave functions, and employ the dipole parametrization (including the Gal-
ster factor for Gp(q3)) for the nucleon electromagnetic form factors. Note that
the Sachs form factor G'j;(q2) is used in the model-independent isovector two-body
currents obtained from the charge-independent part of the AV18 interaction. Also
shown are the total results corresponding to the Gari-Kriimpelmann parametriza-
tion [106] of the nucleon electromagnetic form factor (TOT-N(GK)).

To have a better insight into the electromagnetic current operator and the

structure of the three-nucleon systems, it is useful to define the quantities

F5(a) = 3 [1CHe) Fag(g; He) & p(H) Fag(g: H)] (196)
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where p(*He) and p(®H) are the magnetic moments of 3He and 3H respectively.
In fact, if the ®H and *He ground states were pure 7'=1/2 states, then the F};
and F), linear combinations of the three-nucleon MFF would be only influenced
by, respectively, the isoscalar (S) and isovector (V') parts of the current operator.

For example, the one-body current has the isospin structure

i =55 4V, (197)

From Eq. (196), using the definition of Eq. (183), we obtain
Fi(g) x (4. (198)

Fhilg) < (X3, (199)

in a schematic notation. However, the *H and *He ground states are not pure
T=1/2 states; in fact, the electromagnetic and isospin-symmetry breaking terms
present in the AV18 interaction, generate small isospin admixtures with 7" >1/2.
As a consequence, purely isoscalar (isovector) current operators give small, oth-
erwise vanishing, contributions to the £}, (F};) MFF.

Among the two- and three-body current operators described in Chapter 4, the
PS, V, wry and n7g currents are purely isovector, while pry is purely isoscalar.
As already pointed out in Section 4.1.2, the momentum-dependent currents SO,
LL, SO2 have both isoscalar and isovector terms. The one-body current has also,
as already discussed, both isoscalar and isovector components.

The contributions of the individual components of the two- and three-nucleon
(7mmg term) currents to the Fy; and F}; combinations are shown in Fig. 15. In the
diffraction region the PS isovector current gives the dominant contribution to Fy;,
while the contributions from remaining currents are about one order of magnitude
or more smaller. The 7mg current is found to give a very small correction.

Among the two-body contributions to Fjr, the most important is that due
to the SO currents, the remaining operators producing a very small correction.
Note that the isovector PS and V currents contribute to Fy; because of the small
isospin-symmetry breaking components present in the 3H and *He wave functions

induced by the AV18 model, as mentioned earlier.
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s

Contributions to [F°(a,)|
Vv

H
O\
Contributions to [F"\(a,)|

107 ¢

FIG. 15: Individual contributions to the Fj;(g,) and F};(g,) combinations,
Eq. (196), of the *H and *He magnetic form factors, obtained with the dipole
parametrization of the nucleon electromagnetic form factors. The sign of each con-
tribution is given in parenthesis. Note that, because of isospin-symmetry breaking
components present in the 3H and 3He wave functions, the purely isovector PS, V
and wmg currents (purely isoscalar pry current) give non vanishing contributions
to the Fyy(qu) (Fy;(gu)) combination. However as the s (pry) contribution is
very small, is not shown.

Finally, the cumulative contributions to the Fj, and F), combinations are
compared with the experimental data [105] in Fig. 16. The isoscalar form factor
F3i(q) is rather poorly known, especially at higher g-values. Some discrepancies
are present between the full calculation (curve labelled TOT-N) and the experi-
mental results at moderate g-values. For the isovector form factor Fy;, the zero
is calculated to occur at lower ¢-value than experimentally observed. As shown
in the next Section, this discrepancy between theory and experiment remains un-
resolved even when A-isobar degrees of freedom are included in both the nuclear
wave functions and currents.

Predictions for the magnetic moments are given in Tables VII and VIII, while
those for the magnetic radii are listed in Table IX. These results are discussed in
Subsection 5.3.2.
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FIG. 16: The Fy;(g,) and F};(g,) combinations of the *H and *He magnetic form
factors, obtained with single-nucleon currents (1-N), and with inclusion of two-
nucleon current ((1+2)-N) and 77g three-nucleon current (TOT-N) contributions,
are compared with data (shaded area) from Amroun et al. [105]. The dipole
parametrization is used for the nucleon electromagnetic form factors.

The Charge Form Factors

The charge operator includes, in addition to the one-body term of Eq. (55), the
PS, V, w, pry and wny two-body operators, discussed in Chapter 4. The calcu-
lated 3H and *He charge form factors (CFF) are compared with the experimental
data [96, 97, 98, 99, 100, 101, 102, 103, 104, 105] in Fig. 17.  There is excel-
lent agreement between theory and experiment, as is clear from this figure. The

L'is also evident. The

important role of the two-body contributions above 3 fm™
remarkable success of the present picture based on non-relativistic wave func-
tions and a charge operator including the leading relativistic corrections should
be stressed. It suggests, in particular, that the present model for the two-body
charge operator is better than one a priori should expect. These operators, such
as the PS charge operator, fall into the class of relativistic corrections. Thus,
evaluating their matrix elements with non-relativistic wave functions represents

only the first approximation to a systematic reduction. A consistent treatment
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FIG. 17: The charge form factors of 3H and *He, obtained with a single-nucleon
charge operator (1-N) and with inclusion of two-nucleon charge operator contribu-
tions (TOT-N), are compared with data (shaded area) from Amroun et al. [105].
Note that the 1-N results also include the Darwin-Foldy and spin-orbit correc-
tions. Theoretical results correspond to the AV18/UIX PHH wave functions, and
employ the dipole parametrization of the nucleon electromagnetic form factors.

of these relativistic effects would require, for example, inclusion of the boost cor-
rections on the nuclear wave functions [71, 72, 108]. Yet, the excellent agreement
between the calculated and measured CFF suggests that these corrections may
be negligible in the g-range explored so far.

For completeness, we show in Fig. 18 the contributions from the individual
components of the charge operator to the isoscalar (S) and isovector (V') form
factors, defined, similarly to Eq. (196), as

FEV(q) = 5 [2Fela He)  Fo(g? H)] (200)
Similar observations to the ones made for Fﬁ/v(q) are valid also for Fi" (q). We
note that the PS, V and w charge operators contain both isoscalar and isovector
components, see Eqs. (100)—(102), while the wmy and pry charge operators are,
respectively, purely isovector and isoscalar.

Finally, values for the charge radii of *H and 3He are listed in Table VI. The

results including the contributions associated with the two-body charge operators
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FIG. 18: Individual contributions to the FZ(g,) and FY(g,) combinations,
Eq. (200), of the 3H and ®He charge form factors, obtained with the dipole
parametrization of the nucleon electromagnetic form factors. The sign of each
combination is given in parenthesis. Note that, because of isospin-symmetry
breaking components present in the 3H and *He wave functions, the purely isovec-
tor wmy (isoscalar pmy) charge operator gives a non vanishing contribution to the
Ff(qu) (F¥(qu)) combination.

are found to be in excellent agreement with experimental data.

5.3.2 Nucleons and A’s

The 3H and *He magnetic form factors obtained by including nucleon and A-
isobar degrees of freedom in the nuclear wave functions and currents are shown in
Fig. 19; individual contributions to the combinations F}; and FY; are displayed
in Fig. 20. Finally, individual and cumulative contributions to the magnetic mo-
ments and cumulative contributions to the magnetic radii of the trinucleons are
listed in Tables VII, VIII and IX, respectively. Note that in Fig. 20 and Ta-
ble VII the contributions labelled 1-A and 2-A are associated with the diagrams
in Figs. 11 and 12, respectively. Also note that the individual nucleonic and A-

isobar contributions in Fig. 20 and Table VII are normalized as, in a schematic
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TABLE VI: Cumulative and normalized contributions to the 3H and *He r.m.s.
charge radii, in fm, compared with the experimental data.

SH SHe
1-N 1.711 1.919
TOT 1.725 1.928
expt. 1.755+0.086 1.95940.030

notation, .
(V]jo|W)
(W)

However, the cumulative contributions in Fig. 19 and Table VIII and IX are

0] = (201)

normalized as

(W[j(Nonly) | ¥)
[TOT—-N] = (U0 , (202)
when “nucleons only” terms are retained, and as
v (N +A) | ¥
TOT— (N + A)) = Ywsa IV A) [Wavra) (203)

(Unia [Unia)
when, in addition, the A terms are included. This last expression takes into ac-
count the change in wave function normalization induced when the A-admixtures
are included.

The MFF of 3H and 3He, when the full model for the current operator is used
(curves labelled TOT-(N+A)) are in rather good agreement with experiment up
to g-values of ~ 4 fm ! and ~ 3 fm !, respectively. The discrepancy between
theory and experiment, especially in the *He MFF first diffraction region, remains
unsolved. In fact, the A-contributions have been found to be rather small, as can
be seen in Fig. 19 comparing the curves labelled TOT-N and TOT-(N+A), and
in Fig. 20, comparing the 1-N with the 1-A and 2-A contributions. This is in
contrast with earlier studies [109], where it was suggested that the inclusion of
A-isobar degrees of freedom could reproduce the experimental data in the region
of the first zero. In fact, the 2-A contribution obtained in that study [109] had
the wrong sign (opposite to that obtained here).
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FIG. 19: The magnetic form factors of >H and ®*He, obtained with single-nucleon
currents (1-N), and with inclusion of two- and three-nucleon current (TOT-N)
and A (TOT-(N+A)) contributions.

The predicted magnetic moments of the trinucleons are within less than 1% of
the experimental values. The predominantly isovector A-isobar contributions lead
to an increase (in magnitude) of the *H and 3He magnetic moments calculated
with nucleons only degrees of freedom of, respectively, 1.1% and 1.7%. We note
that perturbation theory estimates of the A-isobar contributions are found to be
significantly larger than obtained here [67].

The predicted magnetic radii of *H and 3He are, respectively, 2% and 3%
smaller than the experimental values, but still within experimental errors. Inclu-
sion of the contributions due to two- and three-body exchange currents leads to

a decrease of the *H and *He magnetic radii by, respectively, 5% and 6%.
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FIG. 20: The single-nucleon contribution to the Fj;(q,) and Fy;(g,) combination
of the 3H and 3He magnetic form factors is compared with the 1-A and 2-A
contributions, associated respectively with diagrams of Fig. 11 and 12.

TABLE VII: Individual contributions from the different components of the nuclear
electromagnetic current operator to the 3H and *He magnetic moments and their
ps and gy combinations, in nuclear magnetons (n.m.). Note that, because of
isospin-symmetry breaking components present in the PHH 3H and 3He wave
functions, purely isoscalar (isovector) currents give non vanishing contributions
to the puy (ps) combination. The contributions to pg due to the nmg and 2-A
currents and those to uy due to the SO2+LL currents are very small and are not
listed.

p(CH)  p(°He) ps v
I-N 2571 -1.757 0.407 2.164
PS 0274 -0.269 0.002 0.271
vV 0.046 —0.044  0.001 0.045
SO 0.057  0.010  0.033 0.023

SO2+LL  -0.005 -0.006 -0.005

pry+wry  0.016 -0.009 0.003 0.012
TS 0.002 —0.002 0.002
1-A 0.084 -0.064 0.010 0.074
2-A 0.024 —0.024 0.024
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TABLE VIII: Cumulative and normalized contributions to the *H and 3He mag-
netic moments and their pg and py combinations, in nuclear magnetons (n.m.),

compared with the experimental data.

pCH) pCHe)  ps  pv
1N 2571 —1.757 0.407 2.164
TOT-N 2.961 -2.077 0.442 2.519
TOT-N+1-A 2971 -2.089 0.441 2.530
TOT-(N+A)  2.994 -2.112 0.441 2.553
expt. 2979 -2.127 0.426 2.553

TABLE IX: Cumulative and normalized contributions to the *H and *He r.m.s.
magnetic radii, in fm, compared with the experimental data.

SH SHe
1-N 1.895 2.040
TOT-N 1.810 1.925
TOT-N+1-A 1.804 1.916
TOT-(N+A)  1.800 1.909

expt. 1.840£0.181 1.965£0.153




Chapter 6

The He Threshold

Electrodisintegration

Radiative capture, photodisintegration and electrodisintegration reactions are
other useful tools for exploring the structure of nuclei and their electromagnetic
responses, besides elastic electron-scattering. In the particular case of the three-
nucleon systems, there is a large body of experimental results for pd radiative
fusion and *He photodisintegration and electrodisintegration at threshold. For
the 3He electrodisintegration reaction, however, the data are still quite uncertain.
A systematic study of these processes using AV18/UIX PHH wave functions and
including one- and two-body components in the model of the electromagnetic
transition operators, has been performed in Ref. [15].

In this Chapter we limit our discussion to the 3He threshold electrodisintegra-
tion reaction. In Section 6.1 we define the observables of interest for the reaction
3He (€, ¢/)pd at threshold. In Section 6.2 we list the terms included in the elec-
tromagnetic current and charge operators and describe some calculation details.

Finally in Section 6.3 we present and discuss our results.

76
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6.1 The 3ﬁe(5, ¢')pd Reaction at Threshold

The inclusive cross section for polarized electron scattering from a polarized spin

1/2 target can be written as [15, 110]

To S gw) 4 h Alg,w) (204)
dew - q, q, )
E(Qa w) =0M [ULRL((L w) + 'UTRT((L w)] ) (205)
A(q,w) = oy v R (g, w) sin 6% cos ¢* + v Ry (q, w) cos 6] | (206)

where oy is the Mott cross section defined in Eq. (157), the coefficients v, are
functions of the electron kinematic variables, h = %1 is the helicity of the incident
electron, and the angles 0* and ¢* specify the direction of the target polarization

with respect to q, see Fig. 21.

FIG. 21: Kinematic and coordinate system for scattering of polarized electrons
from a polarized target.

The kinematic functions vy, and vy are defined in Eqs. (158) and (159), while

v and v are given by

B tan 7 (207)
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q, ,0. 0
o= — + tan” —tan — . 208
v q2+ an” 7 tan o (208)

The response functions R, contain the nuclear structure information. They are

defined in terms of the nuclear charge and current operators p(q) and j(q) as:

Ry, = Xf: [ {Flp(@) [ W5 15) [ (209)
Ry = Xf: [ {F 1) [ ¥s10,) (210)
Ry = —2%:3?{2};(f|p(q)|‘If3,%g3>*<f|jx(q)I‘Ifg,%ay}, (211)
Ry =

Z;M [ Laa(a) | 510,011 (212)

where \1137%03 is the initial >He bound state wave function with spin projection o3,
and A = +1 denote the spherical components of the current operator. We note
that the sum over the three-nucleon final states |f) is in fact restricted to include
only the pd continuum, since the excitation energies of interest here are below the
threshold for the three-body breakup. Finally, note that the unpolarized cross
section is obtained from Eq. (204), summing over the electron helicities. The
longitudinal-transverse and transverse-transverse asymmetries A;;+ and A;v are
related to the functions v, and R, via the relations:
v R (g, w)
v R (¢, w) + vrRy(q,w) ’
v Ry (g, w)
v Ry (q,w) + vrRy(q,w)

To obtain explicit expressions for the response functions R, in terms of the

ALT'(Q;W) =

AT’ (QJ Ld)

(213)

reduced matrix elements of Coulomb (C), transverse electric (E) and transverse
magnetic (M) multipole operators, already defined in Eqgs. (164)—(166), we first
introduce the electromagnetic transition amplitudes between the initial 3He bound
state and the final pd continuum state having proton and deuteron with relative
momentum p and spin projections, respectively, o, and o. These transition am-

plitudes are given by

Poozos (p= (1) = <\I]£)T0)02|p(q)|\113,%03> ) (214)
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Taosa, (P ) = (U5 0, |ex(a) - §(@)| 5 1,,) (215)

where q is the momentum transfer and é,(q), A = £1, are the transverse polariza-
tions of the virtual photon. The wave function \1!5;302 with ingoing-wave boundary

condition is expanded as

B 1 . % s\ LSTT(—)
\Ifl(;’,g(m = 471' Z<§0—7 1U2|Ssz> Z IL <SSZ7 LLz|JJZ>YLLz (p)\Ijl—i—Q ) (216)
SS. LL.JJ.
where the @ff;‘jz(ﬁ) are related to the W175”* introduced in Section 3.2 via
T =t S iR, S (217)

L's’

Here R’ is the R-matrix in channel J and oy, is the Coulomb phase shift, given
by

o =arg[l'(L+1+1in)], (218)
with 7 defined as
2
= 219
7 Urel ’ ( )

a being the fine structure constant and v, the pd relative velocity. Introducing
the expansion of Egs. (216) and (217) into the matrix elements of Eqgs. (214)-(215),

one finds:

. N -
Janos(@ @) =47 > (=1)"(50,109]SS:)(SS:, LL: | J) Y1 () 550, (@)
LL.SS.JJ.
(220)
. —LSJJ.(—) A .
T (@) = (15 lea(@) -i(a) Y5 1,,) (221)
and similar expressions hold for the pyg,q,(P,q) amplitudes. When q is taken
along the z-axis, i.e. the spin-quantization axis, standard techniques [93] lead to

the following expansions for the amplitudes p%57 (q) and j757 (q) in terms of

J,o3
reduced matrix elements of Coulomb, transverse electric and transverse magnetic

multipoles:

o0

) L [20+1 1
piS(qz) = V4WZIE\/;<§03,ZOIJJ,Z> Cr¥(a) (222)

£=0
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N 20 —|— 1 1
S0 =~V S 2L Lo iy () + EEG)  e29
=1
Here T/57(q) is a short notation for <_1+2 1 Te(q W5 1), with T'= C, E, M.

LSJ
J.o3

(gz) and j757.(¢z), the reduced matrix elements

LSJ

The calculation of the matrix elements p7° (¢z) and j77.(¢2) is described in

LSJ
J.o3

CE5(q), MF57(q) and EF57(q) are obtained inverting Eqs. (222) and (223). For

example we have:

the next Section. Given p

Ls3 1 LS% .LS3 .
M) = = [V )~ )] (225)

Using Eqs. (214)—(223), the explicit expressions for the response functions R,

in terms of the reduced matrix elements of the multipole operators are given by:

R = fu > |CF)? (226)
LSJe
Ry = foa Y. (|EFS)? 4+ |MEST)P) (227)
LSJe

Rip — Qﬂfpdz7\/‘]”/2grel(cwf+iOiSJ)*[,/J—1/2(MLS"+ELSJ)

57 2J+1

—iy/J+3/2( M+ Eﬁ”)]] : (228)

RT’ = 2 fpd Z

LSJ

— 2,/(J+3/2)(J-1/2)

LSJ LSJ |2 LSJ LSJ |2
T |V B M B

S (M) + BEST ) (M + Eff")]] . (229)

where the phase-space factor fp4 is given by f,q = 4up, and in the interference

response functions the notation T2/ for the reduced matrix elements means

T/5 - The magnitude of the relative momentum p is fixed by energy con-

servation
¢ p?
w+bBE=FE+——+— 230
’ 2T 2(my+m) | 2 (230)
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where Fy and Fs5 are the two- and three-body ground-state energies, my is the
deuteron mass and p is the 142 reduced mass. We will refer to the term p?/(2p)

as excitation energy and it will be indicated with wy below.

6.2 Calculation

The model for the current operator in the matrix element 52, .. (p, q) of Eq. (215)
includes, besides the standard one-body term of Eq. (54), also the model-
independent (MI) two-body operators PS, V, SO, LL and SO2, obtained from the
charge-independent part of the AV18 interaction, the model-dependent (MD) pry
and w7y two-body currents, and finally the two-body A-contributions arising from
the j;(q; N = A) and j;(q; A — A) operators defined in Eqs. (118) and (119), re-
spectively. The three-body currents associated with the S-wave two-pion exchange
three-nucleon interaction (terms labelled 77g in the previous Chapters) and with
the NN = NA transition have not been included. The contributions of these
terms were found already small in the trinucleon form factor calculations [13], as
discussed in Chapter 5.

The model for the charge operator in the matrix element p,q,0,(P,q) of
Eq. (214), contains the standard one-body term of Eq. (55), and the two-body
contributions PS, V, w, pry and wnvy.

The matrix elements of Eqgs. (214) and (215) are calculated using the same
Monte Carlo techniques based on the Metropolis et al. algorithm [95] as the ones
discussed in Section 5.2. We have again used the probability density W (R) of
Eq. (186), with ¥, = \Ilgéi%.

Due to the restricted model for the A-currents, which includes only j;(q; N =
A) and j(q;A — A), we do not retain the A-contributions associated with the
diagrams of Fig. 12. Instead, only the terms shown in Fig. 11 have been considered.

These have been calculated with the techniques described in Section 5.2.
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6.3 Results

The most recent and systematic experimental study of the unpolarized threshold
electrodisintegration of *He and *H we are aware of was carried out by Retzlaff et
al. [111] at the MIT /Bates Linear Accelerator Center. The longitudinal and trans-
verse response functions R; and Rp were obtained using Rosenbluth separations
for three-momentum transfers in the range 0.88-2.87 fm ! and excitation energies
from two-body thresholds up to 18 MeV. We are interested here to the inclusive
3He electron scattering data, which are in agreement with the measurements of
earlier experiments [112], after scaling for the slightly different kinematics. No

calculations of the *H response functions have been carried out in the present

study.
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FIG. 22: The longitudinal and transverse response functions of *He, obtained with
the AV18/UIX Hamiltonian model and one-body only (dashed lines) or both one-
and two-body (solid lines) charge and current operators, are compared with the
data of Ref. [111] at excitation energies below the ppn breakup threshold.

The 3He R; and Ry results at momentum transfer values ¢=0.88, 1.64 and
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2.47 fm~! are shown in Fig. 22, where the data are compared with our calculations
performed using one-body only (dashed lines) or both one- and two-body (solid
lines) charge and current operators. We have here retained the contributions from
L=0-5 pd scattering states (see Eqs. (226) and (227)), and we have verified that
the expansion is then fully converged. There is satisfactory agreement between
theory and experiment for all cases, but for the longitudinal response at ¢=2.47
fm~!. The data are affected however by rather large errors. The two-body com-
ponents of the transition operator play an important role, particularly for the
transverse response at the highest ¢-values. The relative sign between the one-
and two-body contributions is consistent with that expected from elastic form
factor studies of *He [13]. As already seen in Section 5.3, the two-body current
(charge) operators increase (decrease) the one-body predictions for the magnetic
(charge) form factor at ¢ < 3 fm™.

In Fig. 23 we show the Ry, Ry, Ry and Ry response functions at a fixed
excitation energy wx = 1 MeV above the pd threshold, in the three-momentum
transfer range 0-5 fm~!.
the dominant contribution, while in Ry and Ry both L = 0 and L = 1 states

In R;, and Rpp the L = 0 pd continuum states give

give equally important contributions over the whole ¢ range. As can be seen
comparing the curves where only one-body contributions are retained (labelled
“IA”) and those with both one- and two-body contributions (labelled “FULL”),
all response functions are substantially affected by two-body currents, especially
Ry and Rp.

Finally, in Fig. 24 we show the unpolarized cross section, and the A;;+ and A
asymmetries in the threshold region at an incident electron energy of 4 GeV. The
asymmetries are relatively large at high ¢, and particularly sensitive to two-body
currents. The cross section for the chosen kinematics (incident electron energy
of 4 GeV, fixed pd excitation energy of 1 MeV, and 0° < § < 14°) is dominated
by the longitudinal response function. Note that in Fig. 24 we also show the

plane-wave-impulse-approximation (PWIA) results. These have been calculated
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by approximating the wave function as

Fr(prpa)

231
o (231)

W (PWIA) = > [[si ® dal(xi)]s ® Vi(33)]

cyclic 15k
See Section 3.2 for notations. The large difference between the PWIA and the
IA and FULL results indicates that the final-state interaction between the proton

and the deuteron plays an important role.
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FIG. 23: The longitudinal (Ry), longitudinal-transverse (Rp), transverse (Rr)
and transverse-transverse (R7v) response functions of *He, obtained with the
AV18/UIX Hamiltonian model and one-body only (thick dashed lines) or both
one- and two-body (thick solid lines) charge and current operators, are displayed
at a fixed excitation energy of 1 MeV for three-momentum transfers in the range
0-5 fm~'. In R; and R;;» we show the contributions associated with the (dom-
inant) S-wave pd scattering states, while in Ry and Ryv both S- and P-wave
contributions are shown.
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FIG. 24: The inclusive cross section, and the A;;» and A;» asymmetries, obtained
with the AV18/UIX Hamiltonian model and one-body only (dashed lines) or both
one- and two-body (solid lines) charge and current operators, are displayed for
SHe at a fixed excitation energy of 1 MeV for three-momentum transfers in the
range 0-5 fm~'. The results in PWIA (dotted lines) are also shown. The incident
electron energy is 4 GeV, and the electron scattering angle is in the range 0-14°.



Chapter 7

The hep Reaction

There has been recently a revival of interest in the process *He(p,e v, ) He [18, 19,
20, 21, 22|, known as the hep reaction. This interest has been spurred by the Super-
Kamiokande (SK) collaboration measurements of the energy spectrum of electrons
recoiling from scattering with solar neutrinos [23, 113, 114]. At energies larger
than 14 MeV, more recoil electrons have been observed than expected relative
to standard-solar-model (SSM) predictions [24], reduced by a factor of ~ 0.5 to
fit the lower-energy bins. The hep process is the only source of solar neutrinos
with energies larger than 15 MeV-their end-point energy is about 19 MeV. The
SSM neutrino flux spectra [24] are shown in Fig. 25. Since the hep process has
too small a cross section to be studied experimentally, the associated neutrino
flux is based only on theoretical calculations [25]. The discrepancy between the
observed and SSM energy spectra has therefore led to question the reliability of
these hep cross section calculations. In particular, the SK collaboration [23] has
shown that a large enhancement, by a factor of about 17, of the hep contribution
would essentially fit the observed excess of recoiling electrons.

The theoretical description of the hep process constitutes a challenging prob-
lem from the standpoint of nuclear few-body theory, as discussed in Refs. [14, 16].
To explain this aspect, we consider the limit in which the momentum transfer
g of the reaction is set to zero. This approximation was taken in all previous

calculations, and it can appear to be adequate, since, for the hep reaction, ¢ <
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FIG. 25: The SSM solar neutrino energy spectrum. The continuum neutrino
fluxes are given in cm™2 sec™! MeV !, the lines in cm™2 sec™!.

20 MeV/c. Introducing the 2*'L; notation for the p3He initial state (S=0,1
is the channel spin, L the two clusters relative orbital angular momentum and
J =L+8), in the ¢ = 0 limit the hep reaction is induced only by the axial cur-
rent and axial charge operators, acting, respectively, between the initial 3S; and
3Py capture channels and the final J™ = 0 “He ground state. When P-wave con-
tributions are neglected, therefore, only the axial current operator matrix element
between the 2S; initial state and the *He final state needs to be considered. The
non-relativistic one-body axial current operator has been discussed in Chapter 4
(see Eq. (137)), and, in its ¢=0 limit, is known as Gamow-Teller (GT) opera-
tor. If the *He wave function were to consist of a symmetric S-state term only,
namely Wy = ¢4(S) det[pT1,pl2, n T3, n L4, then it would be an eigenfunction of
the GT operator. Of course, tensor components in the nuclear interactions gen-
erate significant D-state admixtures, that partially spoil this eigenstate property.
To the extent that this property is approximately satisfied, though, the matrix

element of the GT operator between the 3S; p3He and *He states vanishes due
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to orthogonality between the initial and final states. Therefore, this transition
which is expected to give the leading contribution, is instead suppressed. Thus,
to obtain a reliable estimate, one needs: (i) an accurate description of the small
components of the 3He and *He wave functions, in particular the D-state admix-
tures; (ii) inclusion in the model for the axial current operator of both relativistic
corrections and many-body contributions; (iii) inclusion in the p®He initial state
of all L = 0 and L = 1 capture channels. These are in fact the main features of
the calculation presented here. In Section 7.1 we define the astrophysical S-factor
and the cross section of the hep reaction, while in Section 7.2 we give some details

of the calculation. Finally, in Section 7.3 we present and discuss our results.

7.1 The hep Cross Section and Astrophysical S-

factor
The astrophysical S-factor at center-of-mass (c.m.) energy E is defined as
S(E)=Eo(E)e*™ (232)

where o(F) is the hep cross section and 7 has been given in Eq. (219). The term
e?™ is the inverse of the so-called Gamow penetration factor, proportional to
the probability that the proton and 3He moving with relative velocity v, will
penetrate their electrostatic repulsion. The definition above factors out the strong
energy-dependent terms of o(E), so that S(E) is weakly dependent on E. The
c.m. energies of interest involved in the p3He weak capture reaction, are of the
order of 10 keV: the energy at which the reaction is most probable to occur, known
as the Gamow-peak energy, is in fact 10.7 keV.

In this Section we sketch the derivation of the cross section o(E) for the hep
reaction. We proceed in three steps: in Subsection 7.1.1 we define the transition
amplitude of the process, performing a partial-wave expansion of the p3He initial
scattering state, similar to what was done in Section 6.1; in Subsection 7.1.2

we discuss the multipole decomposition of the nuclear weak charge and current
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operators, and in Subsection 7.1.3 we give the final expression for the total cross

section o(FE).

7.1.1 The Transition Amplitude

The capture process *He(p,e*v.)!He is induced by the weak interaction Hamilto-
nian [14, 93]
Gv - .
Hy = 2 / dx e 1PAP)X |0 () 233
w NG 7% (x) (233)

where Gy, is the Fermi coupling constant (Gy=1.14939 1075 GeV~2 [115]), I, is

the leptonic weak current

ly = Eufya(l - 75)7]8 = (ZOJ _l) ) (234)

and j7(x) is the hadronic weak current density. The positron and (electron)
neutrino momenta and spinors are denoted, respectively, by p. and p,, and v,
and u,. The Bjorken and Drell [66] conventions are used for the metric tensor
g°" and y-matrices; however, the spinors are normalized as viv, = ulu, = 1. The

reaction and its kinematic are described schematically in Fig. 26.

>

/ g3

FIG. 26: Schematic representation of the hep reaction.
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The transition amplitude in the c.m. frame is then given by

(fIHwli) = % 17 (—q; *Hej (a) |p; p*He) | (235)

where q = p. + p,, |p;p*He) and | — q; *He) represent the p3He scattering state
with relative momentum p and *He bound state recoiling with momentum —q,

respectively, and

j(@) = [ dx e j7(x) = (p(a).i(a)) (236)

The dependence of the amplitude upon the spin-projections of the proton and *He
is understood. Since the energies of interest are of the order of 10 keV, it is useful

to perform a partial-wave expansion of the p3He scattering wave function

o, 11 —=LSJJ.
i = Var L;J V2L + 1 (Gs1, 58alSTN(S T, LOT LYW, 5™, (237)
with
—LSJJ, io . - 1S'JJ,
Uiy =e* Z[l - IRJ]Lé,L’S’\Ijﬁ—% I (238)
L's'

where s; and s3 are the proton and *He spin projections, L, S, and J are the
relative orbital angular momentum, channel spin (S=0,1), and total angular mo-
mentum (J = L+ S), respectively, R’ is the R-matrix in channel J, and o, is the
Coulomb phase shift, as defined in Eq. (218). Note that ¥(*) has been constructed
to satisfy outgoing wave boundary conditions, and that the spin quantization axis
has been chosen to lie along p, which defines the z-axis. The scattering wave func-
tion \IflLfg” as well as the *He wave function ¥, have been discussed in Chapter 3.

Introducing the expansion of Eqs. (237) and (238) in Eq. (235), we obtain:

1 1
S Vir Y VEDFTiM(Esy, EsylS TS, LOIT L)
\/i LSJJ, 2 2

- —LSJJ,
x|l (‘I’4|PT (Q) |\I’1+3 >

<f|HW|i> =

U =LSJJ,
Z lA<\Ij4|qu'JT(q)|\I]1+3 > ) (239)
A=0,£1
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where, with the future aim of a multipole decomposition of the weak transition

operators, the lepton vector 1 has been expanded as

1= Y 1I\é,, (240)
A=0,+1
with l)\ = éq)\ -1 s and
éqO = éqg s (241)
. L. .
€gr1 = q:ﬁ(eql + iep) . (242)

The orthonormal basis €1, €42, €43 is defined by ;3 = q, €2 = P X q/|p % q,

€, = €, X €43, and is shown in Fig. 26.

7.1.2 The Multipole Expansion

Standard techniques [93] can now be used to perform the multipole expansion of
the weak charge and current matrix elements occurring in Eq. (239). In fact, the
procedure is quite similar to the one discussed in Section 5.2, for the electromag-
netic case. Two main differences need, however, to be taken into account. Firstly,
the spin quantization axis is here along p rather than along q. Secondly, and
most importantly, the longitudinal component of the weak current operator has
to be treated explicitly, since its axial-vector part is not conserved. This leads
to the introduction of a fourth multipole operator, which we will refer to as the
longitudinal (L) multipole (its definition is given below).

To address these complications, we first express the states quantized along p
as linear combinations of those quantized along q, using Eq. (170). For ease of
presentation, we define here # and ¢ the angles which specify the direction q (see
Fig. 26). Then, using the transformation properties under rotations of irreducible
tensor operators, we can obtain the following expressions for the matrix elements

of charge and current operators:
<LSJJ. - —J
(Uy | PT(Q) | Uils ) = 47(_1)J(_)J J”D{Jz,o(_@ —0,9) C§SJ(Q) ) (243)

(U] &l - i) [T15) = Var (i)’ (=) "=D7, o(—o,—0,6) LE(q) , (244)
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Wyl & 3T @) U757y = — Ver(—)! (=) " D?, _\(~6,~0,¢)
x  [AMF(q) + EF ()] (245)

Here A\ = +1, and CE57) L5 FL57 and ME57 denote the reduced matrix ele-
ments of the Coulomb (C'), longitudinal (L), transverse electric (£) and transverse
magnetic (M) multipole operators, following the same notation introduced in Sec-
tion 6.1. The explicit expressions for the C', E and M multipole operators have
been given in Egs. (164)—(166), while the longitudinal multipole is defined as [93]

Ly, ( /dXJ -Vii(gzr) Y. (%), (246)

where j(x) is the nuclear current density and j;(qz) are spherical Bessel functions.

Finally, it is useful to consider the transformation properties under parity of
the multipole operators. The weak charge/current operators have components
of both scalar/polar-vector (V) and pseudoscalar/axial-vector (A) character, and

hence

where 17, is any of the multipole operators above. Obviously, the parity of [th-pole
V-operators is opposite of that of [th-pole A-operators. The parity of Coulomb,
longitudinal, and electric [th-pole V-operators is (—)!, while that of magnetic
Ith-pole V-operators is (—)"*!, in analogy to the corresponding electromagnetic

multipoles (see Section 5.1).

7.1.3 The Cross Section

The cross section for the 3He(p,e*v,)*He reaction at a c.m. energy F is given by

2
o(E) = /27r(5<Am+E—q——Ee—Ey> !
2m4 Urel
dp. dp,
ZZI | Hyy | i) o 2 (248)

Seoy 5158 (2m)* (2m)*

where Am = m + mg — my = 19.287 MeV (m, ms and my are, respectively, the

proton, the *He and the *He rest masses), and v, is the p3He relative velocity,
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Urel = P/, i being the reduced mass, g = mms/(m + m3). It is convenient to

write:

1 Z > [(F [ Hw |[i)? = (27)° GT Loy N7, (249)

ses,, $183

where the lepton tensor L7 is defined as

1 (fe — me) b
LO'T — lO'lT* — _t |: ag 1 _ e T 1 _ |4
Z T U TS
= VgVZ + VZV; _ g(TTVe v, +1i €Ua’rﬂve,aVy7ﬂ ) (250)

with €923 = —1, v7 = p?/F, and v§ = p3/E, are the lepton four-velocities. The

nuclear tensor N7 is defined as

N =" W(q; s155) W (q; s183) (251)
5183
where

WU:O(Q; 8153 Z XLSJ q, 5183)CLSJ( ) ) (252)

LSJ
WU:3(q; 8153) = Z X()LSJ(Q; 5183)L§SJ(‘]) ) (253)

LSJ
Wo=% (q; 5153) = > XE (q; s183) [iMJLS‘](q) + EfSJ(q)] : (254)

f is

The dependence upon the direction ¢ and proton and 3He spin projections s, and
s3 is contained in the functions X 57 given by

1
X @ s1s3) = V2L +1ik (=)’ (=) J<231, 33|SJ><SJZ,L0|JJZ>
J

X Di]z,)\(_gba_ea ¢) ) (255)

with A = 0,£1. Note that the Cartesian components of the lepton and nuclear
tensors (0,7 = 1,2, 3) are relative to the orthonormal basis €,1, €,2, €3, defined
at the end of Section 7.1.1.

The expression for the nuclear tensor can be further simplified by making use
of the reduction formulas for the product of rotation matrices [94]. In fact, it can
easily be shown that the dependence of N°7 upon the angle cos = p - q can

be expressed in terms of Legendre polynomials P, (cos §) and associated Legendre
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functions P™(cos @) with m = 1,2. However, given the large number of channels
included in the present study (all L=0 and L=1 capture states), the resulting
equations for N?7 are not particularly illuminating. Indeed, the calculation of the
cross section, Eq. (248), is carried out numerically with the techniques discussed
in Subsection 7.2.2.

A thorough discussion of the cross section expression of Eq. (248) and its long-
wavelength-approximation has been given in Ref. [14]. Here, we only remark that
the long-wavelength-approximation for the cross section, commonly used in all

previous studies, leads to inaccurate results.

7.2 Calculation

The calculation of the p *He weak capture cross section proceeds in two steps: first,
we evaluate, via Monte Carlo techniques, the weak charge and current operator
matrix elements, and by inverting Eqs. (243)-(245), we decompose these in terms
of the reduced matrix elements of the multipole operators. Second, we evaluate
the cross section by carrying out numerically the integrations of Eq. (248). These
two steps are discussed in Subsections 7.2.1 and 7.2.2, respectively. The model

for the weak charge and current operators has been described in Chapter 4.

7.2.1 Monte Carlo Calculation of Matrix Elements

In a frame where the direction of the momentum transfer q also defines the quan-
tization axis of the nuclear spins, the matrix elements of the weak charge and

current operators have the multipole expansion

(U] pl(a) 07577 = Vari/ch(g) (256)
~ % . —LSJ,J,=0 .

(Wy | €50 'JT(CI) | Uis ) = v 47”JL§SJ(‘]) ) (257)
~ % . =LSJ,J, =\ .

(Uyl& 3T (@) [T = Vari! AME (q) + EF ()], (258)

with A = 41. The expressions above can easily be obtained from those in
Eqs. (243)-(245), by setting §=¢=0 and using D7, ; (0,0,0) = &, 5.. The re-

duced matrix elements of the multipole operators are then obtained inverting
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Eqs. (256)-(258). As an example, the reduced matrix element of the axial electric

multipole involving a transition from the p3He 3S; state is simply given by

1 e . —011,7,=A
B 4) = =€, ) [0

The problem is now reduced to evaluate matrix elements of the same type

(259)

as on the right-hand-side of Eq. (259). Similarly to the procedure described in

Section 5.2, we schematically write these matrix elements as

(Vynial Ol Vi3 nia)

(260)

(Uynan [Censa)(Urisnia [V nvia)]?

where the initial and final states wave functions contain both nucleon and A-isobar
degrees of freedom and are obtained using the transition correlation operator
method (TCO) described in Subsection 4.1.5. When the full wave functions are
expanded as in Eq. (190), the numerator of Eq. (260) can be expressed as

(Usnsa O Visnia) = (Yo O(Nonly) [Wrys) + (Vs |O(A) [ Wrys) , (261)

where the operator O(N only) denotes all one- and two-body contributions to the
weak charge or current operator O, involving only nucleon degrees of freedom,
while O(A) includes terms that involve the A-isobar degrees of freedom. A di-
agrammatical illustration of the terms contributing to O(A) is given in Fig. 27.
Connected three-body terms containing more than a single A isobar have been
ignored, since their contributions are expected to be negligible. Indeed, the con-
tribution from diagram (d) of Fig. 27 has already been found numerically very
small.

The two-body terms of Fig. 27 are expanded as operators acting on the nucle-
ons’ coordinates with the same procedure described in Section 5.2 for the terms
of Fig. 11. The three- and four-body terms instead have been calculated retaining

the explicit representation of S (ST) as a 4 x 2(2 x 4) matrix (see Section 5.2),
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FIG. 27: Diagrammatic representation of the operators included in O(A), due to
the one-body current and charge operators, to the transition correlations UV* and
UA% and the corresponding Hermitian conjugates. Thin, thick, dashed and cross-

dashed lines denote, respectively, nucleons, A-isobars, and transition correlations

’ 1t
UBB and UBE .

and of ¥ as a 4 x 4 matrix

36 V6e_ 0 0
—v6e, €9 V8eé_ 0
0 —vBe, —& Vee_ |’
0 0 —V6e, —3e;

=

where &, = F(x £1y)/V2, & = 2, and €}, = (—)#é_,. The result of terms such
as (f):Ui’fAT O](-l)(A — A)UZY on the nucleon-only state |¥) has been derived
by first operating with UZ", then with O](-l)(A — A), and finally with UZ.]J-VAT.
The terms associated with diagrams (f), (g) and (j) were neglected in previous
calculations [25].

The matrix elements in Eq. (261) are computed, without any approximation,

by Monte Carlo integrations, according to the Metropolis et al. algorithm [95]
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as described in Section 5.2. It has been found however more convenient to use a

probability density W (R) proportional to

W(R) o /(T (R)T,(R)) , (262)

where the notation (- -) implies sums over the spin-isospin states of the *He wave
function. Typically, 200,000 configurations are enough to achieve a relative error
< 5 % on the total S-factor.

We finally discuss here an important aspect of the model for the axial transition
operators. As already pointed out in Subsection 4.2.5, in the model for the NA
and AA weak axial charge and current operators, the axial coupling constants
g% and g, see Eqgs. (150)—(153), are not well known. In the quark-model, they
are related to the axial coupling constant of the nucleon by the relations g% =
(63/2/5)ga and G, = (1/5)ga. However, given the uncertainties inherent to quark-
model predictions, a more reliable estimate for g7 is obtained by determining its
value phenomenologically in the following way. It is well established by now [12]
that the one-body axial current of Eq. (137) leads to a ~ 4 % underprediction of
the measured Gamow-Teller matrix element in tritium S-decay, see Table X. Since
the contributions of A — A axial currents (as well as those due to the two-body
operators of Subsection 4.2.3) are found to be numerically very small, as can be
seen again from Table X, this 4 % discrepancy can then be used to determine g7.
Obviously, this procedure produces different values for g% depending on how the
A-isobar degrees of freedom are treated. These values are listed in Table XI for
comparison. The g% value that is determined in the context of a TCO calculation
based on the AV28Q) interaction, is about 40 % larger than the naive quark-model
estimate. However, when perturbation theory is used for the treatment of the A
isobars, the g% value required to reproduce the Gamow-Teller matrix element of

tritium [-decay is much smaller than the TCO estimate.

7.2.2 Calculation of the Cross Section

Once the reduced matrix elements (RMEs) in Eqgs. (256)—(258) have been ob-

tained, the calculation of the cross section o(E) is reduced to performing the
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TABLE X: Contributions to the Gamow-Teller (GT) matrix element of tritium
[B-decay, obtained with the PHH trinucleon wave functions corresponding to the
AV18/UIX Hamiltonian model. The rows labelled “one-body NR”and “one-body
RC”list the contributions associated with the single-nucleon axial current opera-
tors of Eq. (137) and Eq. (138), respectively, while the row labelled “mesonic”lists
the sum of the contributions due to the 7-, p-, and pm-exchange axial current
operators of Eqs. (142)—(144). The rows labelled “A-g%”and “A-g,”list the con-
tributions arising from the one-body A-currents of Eqs. (150) and (151), respec-
tively. The row labelled “A-renormalization”lists the contributions associated
with renormalization corrections to the “nucleonic”matrix element of ji(l)(q; A),
due to the presence of A-admixtures in the wave functions. The cumulative result
reproduces the “experimental value”0.957 for the GT matrix element [12], once the
change in the wave functions normalization due to the presence of A-components
is taken into account.

GT matrix element
one-body NR 0.9218
one-body RC —0.0084
mesonic 0.0050
A-g% 0.0509
A-G 4 0.0028
A-renormalization 0.0074

TABLE XI: The values of the N — A axial coupling constant ¢’ in units of g4,
when the A-isobar degrees of freedom are treated in perturbation theory (PT), or
in the context of a TCO calculation based on the AV28(Q) interaction. The purely
nucleonic CHH wave functions correspond to the AV18/UIX Hamiltonian model.

A-isobar treatment ¢%/ga
PT 1.224
TCO 2.868
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integrations over the electron and neutrino momenta in Eq. (248) numerically.
We write

1 Gy
(27)2 vpal

De 1 1 27
o(E) = /0 dpe p; /_1 dfce/_Idi i dpp? f L, N°T |  (263)

where one of the azimuthal integrations has been carried out, since the integrand
only depends on the difference ¢ = ¢, — ¢,. The d-function occurring in Eq. (248)
has also been integrated out resulting in the factor f—!, with

pe 'Z‘CI/ pll
+ -
my my

r=is

(264)

The magnitude of the neutrino momentum is fixed by energy conservation to be

2A
Py = — (265)
1 +pe~7;eu/m4 + \/(1 +pexe,,/m4)2 + 2A/m4

where A = Am + E — E, — p?/2my. The variable z,, is defined as

ajeyzf)e-f),,:ajexy+\/1—x§\/1—x%cos¢, (266)

where z, = cosf, and x, = cos#,. Finally, the integration over the magnitude of

the electron momentum extends from zero up to

2
pr= \/[\/mi+mg+2m4 (Am+ E) — mi] —m? . (267)

The lepton tensor is explicitly given by Eq. (250), while the nuclear tensor is
constructed using Eqs. (251)-(255). Computer codes have been developed to
calculate the required rotation matrices corresponding to the g-direction (6, ¢)

with

e v
PeZe +Du Ty

= . (268)
VP2 + D2+ 2Pe Dy T

Finally, note that the nuclear tensor requires the values of the RMEs at the

momentum transfer ¢, with ¢ = \/pg + p2 + 2 pe py Tep. To make the dependence
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upon ¢ of the RMEs explicit, we have performed an expansion for ¢ — 0 of the
multipole operators given in Egs. (164)—(166) and (246). Given the low momen-
tum transfers involved, ¢ < 20 MeV /¢, the leading and next-to-leading order terms

are sufficient in the expansion. The multipoles are therefore explicitly written as
T7 () = ¢" (t5™ + 577 ¢%) (269)

where m = J for the Coulomb C; and magnetic M; multipole operators, and
m = J — 1 for the electric E; and longitudinal L; ones. However, when J = 0,
the leading-order term of the expansion of the longitudinal operator Lg is of order
of ¢ [93]. Note that the long-wavelength-approximation corresponds, typically, to
retaining only the ¢, term.

A moderate number of Gauss points (of the order of 10) for each of the integra-
tions in Eq. (263) is sufficient to achieve convergence within better than one part
in 103. The computer program has been successfully tested by reproducing the
result obtained analytically, when only the 3S; F)(A) and L;(A) and 3Py Cy(A)
RMEs are retained.

7.3 Results

In this Section we present our main results, for a more detailed discussion, see
Ref. [14]. In Subsection 7.3.1 we give the results of the astrophysical S-factor, at
three different energies. In Subsection 7.3.2 we discuss the RME values for two
of the initial capture channels, the 3S; and *P,. The former case is considered
to compare with previous calculations [25, 51], while the latter is discussed as
an example of one of the P-wave contributions. Finally, in Subsection 7.3.3, we

consider the implications to the SK neutrino spectrum.

7.3.1 Results for the S-factor

Our results for the astrophysical S-factor, calculated using CHH wave functions

with the AV18/UIX Hamiltonian model, at three different c.m. energies, are given
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in Table XII. By inspection of the table, we note that: (i) the energy dependence
is rather weak: the value at 10 keV is only about 4 % larger than that at 0 keV;
(i) the P-wave capture states are found to be important, contributing about 40
% of the calculated S-factor. However, the contributions from D-wave channels
are expected to be very small. It has been explicitly verified that they are indeed
small in ®D; capture. (iii) The many-body axial currents play a crucial role in the
(dominant) 3S; capture, where they reduce the S-factor by more than a factor of

four.

TABLE XII: The hep S-factor, in units of 1072° keV b, calculated with CHH
wave functions corresponding to the AV18/UIX Hamiltonian model, at p3*He c.m.
energies £=0, 5, and 10 keV. The rows labelled “one-body”’and “full”list the
contributions obtained by retaining the one-body only and both one- and many-
body terms in the nuclear weak current. The contributions due the S; channel
only and all S- and P-wave channels are listed separately.

E—=0 keV E=5%keV E=10 keV

3, S+P 35S, S+P 3S; S+P

one-body 26.4 29.0 259 28.7 26.2 29.3
full 6.38 9.64 6.20 9.70 6.36 10.1

The different contributions from the S- and P-wave capture channels to the
zero energy S-factor are listed in Table XIII. Note that the sum of the channel
contributions is a few % smaller than the total result reported at the bottom
of the table, due to the presence of interference terms among multipole opera-
tors connecting different capture channels [14]. The results obtained using the
two-nucleon AV18 and the older two- and three-nucleon AV14/UVIII interaction
models are also listed. The dominant contribution to the S-factor is obtained from
the 3S; capture channel. The Py capture channel contribution is not the largest
P-wave contribution, as instead expected in previous studies [21], although it is
the only one surviving at ¢=0. A detailed analysis of the 3S; and *P;, RMEs is
given in the next Subsection.

By comparing the AV18 and AV18/UIX results, we note that inclusion of the
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TABLE XIII: Contributions of the S- and P-wave capture channels to the hep
S-factor at zero p®He c.m. energy in 1072 keV b. The results correspond to the
AV18/UIX, AV18 and AV14/UVIII Hamiltonian models.

AVI8/UIX AVI8 AV14/UVIII
IS, 0.02 0.01 0.01
39, 6.38 7.69 6.60
3P, 0.82 0.89 0.79
1P, 1.00 1.14 1.05
3P, 0.30 0.52 0.38
3P, 0.97 1.78 1.24
TOTAL  9.64 12.1 10.1

three-nucleon interaction reduces the total S-factor by about 20 %. This decrease
is mostly in the 3S; contribution, and can be traced back to a corresponding reduc-
tion in the magnitude of the one-body axial current matrix elements. The latter
are sensitive to the triplet scattering length, for which the AV18 and AV18/UIX
models predict, respectively, 10.0 fm and 9.13 fm (see Table IV). This 20 % differ-
ence in the total S-factor values for AV18 and AV18/UIX emphasizes the need for
performing the calculation using a Hamiltonian model that reproduces the bind-
ing energies and low-energy scattering parameters for the three- and four-nucleon
systems. This is true for the AV18/UIX model, but not for the AV18 model.
The different contributions to the astrophysical S-factor when the older
AV14/UVIII potential model is used are given in the last column of Table XIII.
By comparing these results with the ones obtained with the AV18/UIX, we ob-
serve that both the S- and P-wave contributions are not significantly changed; in
particular, the 3S; capture S-factor values differ for only about 3 %. This is due
to our procedure of constraining the model dependent two-body axial currents by
fitting the Gamow-Teller matrix element of tritium [-decay, as discussed at the
end of Subsection 7.2.1. Note that the AV14/UVIII Hamiltonian also reproduces

the low-energy properties for the three- and four-nucleon systems.
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The chief conclusion of this Subsection is that our best estimate for the S-
factor at 10 keV, close to the Gamow-peak energy, is 10.1 x102Y keV b. This
value is ~ 4.5 times larger than the value adopted in SSM, based on Ref. [25], of
2.3 x107% keV b. It is therefore important to point out the differences between
the present and the previous study of Ref. [25]: (i) we have included all P-wave
contributions; (ii) we have retained the full dependence on the momentum transfer
¢; (iii) we have used the CHH method to describe the initial and final state wave
functions, corresponding to the latest generation of realistic interactions. The
CHH method is known to be more accurate than the variational Monte Carlo
(VMC) technique used in Ref. [25], and it better describes the small components
of the wave function to which the GT operator is most sensitive. (iv) We have
included the 1/m? relativistic corrections in the one-body axial current operator.
In 3S; capture, for example, these terms increase by 25 % the L, and E; matrix

elements calculated with the GT operator (see below).

7.3.2 The 3S; and *P, Captures

The 3S; capture is induced by the weak axial charge and current, and weak vector
current operators via the multipoles C1(A), Li(A), E1(A), and M;(V), while the
3Py capture is induced by the weak axial charge and the longitudinal component of
the weak axial current operators via the multipoles Cy(A) and Ly (A), respectively.
The cumulative contributions to the RMEs of these multipoles obtained with
AV18/UIX CHH wave functions, at zero c.m. energy and at a lepton momentum
transfer ¢=19.2 MeV/c are listed in Tables XIV and XVI. Note that the RMEs
listed in all tables are related to those defined in Egs. (243)—(245) via

7LSJ Urel LSJ
T," = 2L [ezmn — 1] T 270
T = [T e 1] TE (270)

which can be shown to remain finite in the limit v, — 0, corresponding to zero

energy. The cumulative nucleonic contributions are normalized as

(W4|O(N only)[W1y5)
(04| @) (U145 W1 4)] 2

lone—body+mesonic| = (271)
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However, when the A-isobar contributions are added to the cumulative sum, the
normalization changes to
(Wy,n4a]|O(N only) + O(A)[¥115n4a)

(W nsaWa v a)(Ursval s nia)]”?

[one—body +mesonic+A] = . (272)

The normalization of the initial scattering state U3 is the same as that of 3He,
up to corrections of order (volume)™'. The three- and four-body normalization
ratios (Unia|Uyia)/(¥|¥) have been given in Chapter 4, Table V.

TABLE XIV: Cumulative contributions to the reduced matrix elements (RMEs)
Ci(q;A), Li(q;A), E\(q;A) and M,(q; V) in 3S; capture at zero p*He c.m. en-
ergy. The momentum transfer ¢ is 19.2 MeV /¢, and the results correspond to
the AV18/UIX Hamiltonian model. The row labelled “one-body”lists the con-
tributions associated with the operators in Eq. (135) for the weak axial charge
p(A), Eq. (136) for the weak axial current j(A), and Eq. (133) for the weak vector
current j(V); the row labelled “mesonic”lists the results obtained by including, in
addition, the contributions associated with the operators in Eqgs. (145)—(147) for
p(A), Egs. (142)—(144) for j(A), and Eqgs. (88)-(89) for j(V), with the substitu-
tions 7; , = 7, + and (7; X T;), = (7, X T;)+ (see Subsection 4.2.2); finally, the row
labelled “A”lists the results obtained by also including the contributions of the
operators in Eqs. (152)—(153) for p(A), Egs. (150)—(151) for j(A), and Eqs. (154)—
(155) for j(V). The A contributions in both p(A) and j(A) are calculated with
the TCO method, and take into account the change in normalization of the wave
functions due to the presence of A-components. Those in j(V) are calculated in

perturbation theory. Note that the RMEs are purely imaginary and in fm?®/? units.
Ci(g;A) Li(g; A) Ei(g;A) M (g; V)
one-body 0.147 x 1071 —0.730 x 10! —0.106 0.333 x 102

mesonic  0.156 x 107 —0.679 x 1071  —0.984 x 107! —0.263 x 1072
A 0.155 x 1071 —0.293 x 107!  —0.440 x 107"  —0.484 x 1072

Inspection of the 3S; capture RMEs of Table XIV, shows that: (i) the C;(A)
RMEs are not small, compared to the dominant L;(A) and E;(A) terms. (ii)
There is destructive interference between the one- and many-body axial current
contributions to the L;(A) and E;(A) RMEs, as it was first obtained in Ref. [51],
using VMC wave functions. (iii) Among the many-body axial current contribu-

tions, those associated with A-excitation are the largest.
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TABLE XV: Cumulative contributions, at momentum transfers ¢g=0 and 19.2
MeV /c, to the reduced matrix elements (RMEs) L;(g; A) and E7(g; A) of the weak
axial current in 3S; capture at zero p®He c.m. energy. The results correspond to
the AV18/UIX Hamiltonian model. Notations as in Table XIV for “one-body”,
“mesonic”’and “A-TCO”, which there was labelled “A”. Finally, the row labelled
“A-PT”lists the results obtained by including the contributions of the operator in
Eq. (150), calculated in perturbation theory (PT). The A-TCO results also take
into account the change in normalization of the wave functions due to the presence

of A-components. Note that the RMEs are purely imaginary and in fm?®/? units.
Li(g; A) Ei(g;A)
q=0 MeV/c ¢=19.2 MeV/c ¢=0MeV/c ¢=19.2 MeV/c
one-body —0.880 x 10°* —0.730 x 10! -0.125 -0.106
mesonic  —0.829 x 107! —0.679 x 10! -0.117 —0.984 x 107!
A-TCO  —0.440 x 107"  —0.293 x 107! —0.625 x 10~} —0.440 x 107!
A-PT —0.447 x 1071 —0.298 x 1071 —0.631 x 107! —0.443 x 10°*

To study the g-dependence of the dominant L;(A) and E;(A) multipoles, we
have listed in Table XV the cumulative contributions to the multipoles RMEs at
two different momentum transfers ¢=0 and ¢=19.2 MeV /c. The ¢-dependence is
important only for the one-body contribution. In fact, the difference between the
¢=0 and ¢=19.2 MeV/c RMEs is constant for all the cumulative contributions
(0.015 and 0.019 for L;(A) and E;(A), respectively). The last row of Table XV,
labelled “A-PT”, lists the RMEs obtained using perturbation theory in the treat-
ment of the A-isobar degrees of freedom (see Subsection 4.1.5). Note that in this
case, the results have been normalized according to Eq. (271). Comparing these
RMEs with the ones obtained in the TCO context (row labelled “A-TCO”), we
see a difference of only 1-2 %. This is due to the fact that in both cases the NA
axial coupling constant g7 is obtained by fitting the Gamow-Teller matrix element
in tritium [S-decay, as discussed in Section 7.2. The dependence of our calculation
on the A-isobar degrees of freedom treatment is therefore strongly reduced.

The 3P, capture RMEs are presented in Table XVI. We first note that the P,
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multipoles are in fact not small: both the Cy(A) and Ly(A) RMEs are of the same
order of magnitude as the E;(A) and L;(A) RMEs in *S; capture. Furthermore,
there is constructive interference between the one- and many-body contributions
to both the axial charge and current operators. In particular, the two-body axial
charge operators of Subsection 4.2.4, among which the pion-exchange term is
dominant, give a ~ 20 % correction to the one-body contribution in the Cy(A)
RME. The Ly(A) RME is about 40 % of, and has the same sign as, the Cy(A)
RME. This positive relative sign produces a destructive interference between these
RME:s in the cross section, substantially reducing the 3P overall contribution to
the S-factor [14]. The Cp(A) and Ly(A) RMEs are in fact expected to be of the

same sign, as discussed in Ref. [14].

TABLE XVI: Cumulative contributions to the reduced matrix elements (RMEs)
Co(g; A) and Lo(q; A) in 3Py capture at zero p*He c.m. energy. The momentum
transfer ¢ is 19.2 MeV /c, and the results correspond to the AV18/UIX Hamiltonian
model. Notations as in Table XIV. Note that the RMEs are purely imaginary
and in fm®/? units.

Colg; A) Lo(g; A)
one-body 0.371 x 1071 0.182 x 10!
mesonic  0.444 x 10~* 0.183 x 107!
A 0.459 x 10~* 0.188 x 10!

7.3.3 Implications for the Super-Kamiokande Solar Neu-

trino Spectrum

The Super-Kamiokande (SK) experiment detects solar neutrinos by neutrino-
electron scattering. It is sensitive, according to the SSM (see Fig. 25), to the
very energetic neutrinos from the ®B weak decay (*B — *He + *He + ™ + 1) and
from the hep reaction. In the SSM the hep neutrinos contribution is expected to
be very small. However, due to a larger end-point energy respect to the 8B weak

decay, the hep reaction is the only source of solar neutrinos at energies larger than
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~ 15 MeV.

The SK results are presented as ratio of the measured to the SSM predicted
events when no neutrino oscillations are included, as function of the recoil electron
energy. Over most of the spectrum, this ratio is constant at ~ 0.5 [23]. At the
highest energies, however, there is an excess of events relative to the 0.5xSSM
prediction. This is seen in Fig. 28 where the SK results from 825 days of data
acquisition [23] are shown by the points (the error bars denote the combined
statistical and systematic error); the dotted line is the 0.5xSSM prediction.

To study the effects of our new value for the S-factor, 10.1 x1072° keV b (see
Table XII) to the SK spectrum, we introduce the ratio a of the hep flux to its

SSM value as
SIleW

SSSM

o= X P | (273)

where P is the observed suppression factor due to neutrino oscillations. There-
fore, if hep neutrino oscillations are ignored, then o = (10.1 x 10?° keV b)/(2.3 x
1072° keV b) = 4.4, while if the hep neutrinos are suppressed by ~ 0.5, then
a = 2.2. The long-dashed and solid lines in Fig. 28 indicate the effect of these
two different values of o on the ratio of the electron spectrum with both 8B and
hep to that with only ®*B (the SSM). Two other arbitrary values of « (10 and 20)
are shown for comparison.

From Fig. 28, we can conclude that the enhancement of the S-factor found in
this calculation, although large, is not enough to completely resolve the discrep-
ancies between the present SK results and the SSM predictions. However, this
accurate calculation of the S-factor, and the consequent absolute prediction for
the hep neutrino flux, will allow much greater discrimination among the proposed

solutions to this problem, based on different solar neutrino oscillation scenarios.
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FIG. 28: Electron energy spectrum for the ratio between the Super-Kamiokande
825-days data and the expectation based on unoscillated ®B neutrinos [24]. The
data are taken from Ref. [23]. The 5 curves from the bottom to the top correspond
respectively to no hep contribution (dotted line), «=2.2, 4.4, 10, 20, with « defined
in Eq. (273).



Chapter 8
Conclusions

In the present thesis, we have reported on accurate calculations for three nuclear
processes: elastic electron-scattering on 3H and *He [13], ®*He electrodisintegration
at threshold [15], and the hep reaction [14, 16]. We have used a non-relativistic
approach, based on latest generation models for the nuclear Hamiltonian and
electroweak currents.

For the first two processes, we have compared our predictions with the available
experimental data. Generally, the calculated observables agree well with the mea-
sured ones. It should be reemphasized that, in order to achieve such agreement,
realistic models for both the nuclear Hamiltonian and electromagnetic transition
operators must be used. Indeed, the impulse approximation completely fails to
reproduce the experimental results, and many-body contributions to the electro-
magnetic charge and current operators need to be included to achieve agreement
with the data.

Some discrepancies, however, still remain unresolved: the 3He magnetic form
factor first zero occurs at lower momentum transfer ¢ than experimentally ob-
served. Furthermore, the 3He longitudinal response function at high ¢ seems to
be overpredicted by theory. These discrepancies provide important motivations
to (i) look for improvements and refinements to models of nuclear interactions

and/or electroweak currents, and (ii) perform more accurate experiments in order
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to confirm the existing data, some of which have large errors. Indeed, new exper-
imental proposals to investigate these discrepancies are currently under study at
the Thomas Jefferson National Accelerator Facility [17].

Finally, the hep reaction calculation provides an example of how our approach
can be applied to study reactions, which occur in stellar interiors at very low en-
ergies and have too small a cross section to be measured experimentally. Some of
these processes are very important in determining solar fusion rates and primor-
dial abundances of elements; the importance of accurate theoretical predictions is
therefore evident. A systematic study of electroweak capture reactions involving

nuclei up to A < 8 will be the object of future work.
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