Misura di sin 2ß

E.Paoloni (INFN & Università di Pisa) BABAR Collaboration

Solenoide

MAGNETIC SPECTROMETER

 $\rho = \frac{|\vec{p_\perp}|}{0.29979 \cdot Z |\vec{B}|}$

(p in GeV/c, B in T, ρ in m)

Figure 15. Relative magnitude of magnetic field transverse to a high momentum track as a function of track length from the IP for various polar angles (in degrees). The data are normalized to the field at the origin.

Eugenio Paoloni

Magnet Parameters

Field Parameters		
Central Field	1.5	Т
Max. Radial Field	< 0.25	Т
at Q1 and $r = 200 \mathrm{mm}$		
Leakage into PEP-II	< 0.01	Т
Stored Energy	27	MJ
Main Coil Parameters		
Mean Diameter of	3060	mm
Current Sheet		
Current Sheet Length	3513	mm
Number of layers	2	
Operating Current	4596	А
Conductor Current	1.2	kA/mm^2
Density		
Inductance	2.57	Н

27 MJ ~ 20 Tonnellate @ 180 km/h

Figure 13. A portion of cryostat assembly. The forward end is shown. Legend: (A) evacuated spaces filled with IR-reflective insulator; (B) superconducting coil (2-layers); (C) aluminum support cylinder; (D) aluminum heat shield; (E) aluminum cryostat housing.

Eugenio Paoloni

Silicon Vertex Tracker

RIVELATORE DI VERTICE

Eugenio Paoloni

Pisa, seminario PhD maggio 2012

SVT CARATTERISTICHE MECCANICHE

Figure 17. Schematic view of SVT: longitudinal section. The roman numerals label the six different types of sensors.

Figure 19. Photograph of an SVT arch module in an assembly jig.

Eugenio Paoloni

READOUT CHIP

Eugenio Paoloni

Eugenio Paoloni

Pisa, seminario PhD maggio 2012

Figure 24. Comparison of a local alignment of all the sensors in the SVT using data from January 2000 with the optical survey of the SVT made during assembly in February 1999 in the (a) $r\Delta\phi$, (b) Δz and (c) Δr coordinates. Plots (d), (e), and (f) show the difference between two local alignments using data from January 15-19 and March 6-7, 2000 for the $r\Delta\phi$, Δz , and Δr coordinates, respectively. In all the plots, the shaded regions correspond to the sensors in the first three layers. In comparing the different alignments and optical survey, a six parameter fit (three global translations and three global rotations) has been applied between the data sets.

Figure 25. Global alignment of the SVT relative to the DCH based on e^+e^- and $\mu^+\mu^-$ events: changes in the relative vertical placement measured a) over the entire ten-month run in the year 2000, and b) a ten-day period, illustrating diurnal variations.

tained with the SVT-only and the DCH-only fits.

Eugenio Paoloni

Drift Chamber

MIKE KELSEY AL LAVORO SULLA DCH

Eugenio Paoloni

Pisa, seminario PhD maggio 2012

CARATTERISTICHE PRINCIPALI

Eugenio Paoloni

PARAMETRI

Parameter	Values
Mixture $He: C_4H_{10}$	80:20
Radiation Length	$807\mathrm{m}$
Primary Ions	$21.2/\mathrm{cm}$
Drift Velocity	$22\mu{ m m}/{ m ns}$
Lorentz Angle	32°
dE/dx Resolution	6.9%

Type	Material	${f Diameter}\ (\mu { m m})$	Voltage (V)	Tension (g)
Sense Field Guard Clearing	W-Re Al Al Al	$20 \\ 120 \\ 80 \\ 120$	$ 1960 \\ 0 \\ 340 \\ 825 $	$30 \\ 155 \\ 74 \\ 155$

Isocrone di 100 ns in 100 ns +

	# of	Radius	Width	Angle
SL	Cells	(mm)	(mm)	(mrad)
1	96	260.4	17.0-19.4	0
2	112	312.4	17.5 - 19.5	45 - 50
3	128	363.4	17.8 - 19.6	-(52-57)
4	144	422.7	18.4 - 20.0	0
5	176	476.6	16.9 - 18.2	56-60
6	192	526.1	17.2 - 18.3	-(63-57)
7	208	585.4	17.7 - 18.8	0
8	224	636.7	17.8 - 18.8	65-69
9	240	688.0	18.0-18.9	-(72-76)
10	256	747.2	18.3 - 19.2	0

Eugenio Paoloni

Eugenio Paoloni

Pisa, seminario PhD maggio 2012

Pattern Recognition

.

.

Kalman fit dei parametri delle tracce

Eugenio Paoloni

Pisa, seminario PhD maggio 2012

PRESTAZIONI: EFFICIENZA

RISOLUZIONE

Detector of Internal Reflected Cherenkov

JERRY VA'VRA E LE SUE BARRE DI QUARZO

Eugenio Paoloni

Pisa, seminario PhD maggio 2012

STRUTTURA MECCANICA

Eugenio Paoloni

Pisa, seminario PhD maggio 2012

STRUTTURA MECCANICA

Figure 54. Display of an $e^+e^- \rightarrow \mu^+\mu^-$ event reconstructed in *BABAR* with two different time cuts. On the left, all DIRC PMTs with signals within the ±300 ns trigger window are shown. On the right, only those PMTs with signals within 8 ns of the expected Cherenkov photon arrival time are displayed.

Eugenio Paoloni

Figure 55. The difference between (a) the measured and expected Cherenkov angle for single photons, $\Delta \theta_{c,\gamma}$, and (b) the measured and expected photon arrival time, for single muons in $\mu^+\mu^-$ events.

Figure 57. The difference between the measured and expected Cherenkov angle, $\Delta \theta_{c,track}$, for single muons in $\mu^+\mu^-$ events. The curve represents a Gaussian distribution fit to the data with a width of 2.5 mrad.

Pisa, seminario PhD maggio 2012

Ricavare: dimensione pmt e numero di fotoni rivelati

PRESTAZIONI

MIKE KELSEY DENTRO IL DIRC

Eugenio Paoloni

Pisa, seminario PhD maggio 2012

Electro Magnetic Calorimeter

CARATTERISITCHE

Eugenio Paoloni

Pisa, seminario PhD maggio 2012

Figure 68. The ratio of the EMC measured energy to the expected energy for electrons from Bhabha scattering of 7.5 GeV/c. The solid line indicates a fit using a logarithmic function.

Figure 69. The energy resolution for the ECM measured for photons and electrons from various processes. The solid curve is a fit to Equation 6 and the shaded area denotes the rms error of the fit.

Eugenio Paoloni

RISOLUZIONE ANGOLAR

Figure 70. The angular resolution of the EMC for photons from π^0 decays. The solid curve is a fit to Equation 7.

$$\sigma_{\theta} = \sigma_{\phi} = \left(\frac{3.87 \pm 0.07}{\sqrt{E(\text{GeV})}} + 0.00 \pm 0.04\right) \text{ mrad. (10)}$$

Eugenio Paoloni

Pisa, seminario PhD maggio 2012

PRESTAZIONI

Figure 71. Invariant mass of two photons in $B\overline{B}$ events. The energies of the photons and the π^0 are required to exceed 30 MeV and 300 MeV, respectively. The solid line is a fit to the data.

Eugenio Paoloni

Instrumented Flux Return

Figure 73. Overview of the IFR: Barrel sectors and forward (FW) and backward (BW) end doors; the shape of the RPC modules and their dimensions are indicated.

Pisa, seminario PhD maggio 2012

Eugenio Paoloni

RESISTIVE PLATE CHAMBERS

Table 13

Figure 74. Cross section of a planar RPC with the schematics of the high voltage (HV) connection.

Pisa, seminario PhD maggio 2012

IFR Readout segmentation. The total number of channels is close to 53,000.

section	# of sectors	coordinate	# of readout layers	# strips layer/sect	strip length (cm)	strip width (mm)	total $\#$ channels
barrel	6	ϕ	19	96	350	19.7-32.8	$\approx 11,000$
		\mathbf{Z}	19	96	190-318	38.5	$\approx 11,000$
endcap	4	У	18	6x32	124-262	28.3	$13,\!824$
		х	18	3x64	10-180	38.0	$\approx 15,000$
cylinder	4	ϕ	1	128	370	16.0	512
		\mathbf{Z}	1	128	211	29.0	512
		u	1	128	10-422	29.0	512
		V	1	128	10-423	29.0	512

Eugenio Paoloni

IDENTIFICAZIONE DEI MUONI

Figure 79. Muon efficiency (left scale) and pion misidentification probability (right scale) as a function of a) the laboratory track momentum, and b) the polar angle (for 1.5 momentum), obtained with loose selection criteria.

Figure 78. Efficiency history for 12 months starting in June 1999 for RPC modules showing different performance: a) highly efficient and stable; b) continuous slow decrease in efficiency; c) more recent, faster decrease in efficiency.

Eugenio Paoloni

TRIGGER

Event type	$\begin{array}{c} {\rm Cross} \\ {\rm section} \\ {\rm (nb)} \end{array}$	Production Rate (Hz)	Level 1 Trigger Rate (Hz)
$b\overline{b}$	1.1	3.2	3.2
other $q\overline{q}$	3.4	10.2	10.1
e^+e^-	$\sim\!53$	159	156
$\mu^+\mu^-$	1.2	3.5	3.1
$ au^+ au^-$	0.9	2.8	2.4

Figure 82. Simplified L1 trigger schematic. Indicated on the figure are the number of components (in square brackets), and the transmission rates between components in terms of total signal bits.

Eugenio Paoloni

Table 15

Trigger primitives for the DCT and EMT. Most energy thresholds are adjustable; those listed are typical values.

	Description	Origin	No. of bits	Threshold
B A A'	Short track reaching DCH superlayer 5 Long track reaching DCH superlayer 10 High $p_{\rm t}$ track	BLT BLT PTD	$ \begin{array}{c} 16 \\ 16 \\ 16 \end{array} $	$\begin{array}{c} 120 \ \mathrm{MeV}/c \\ 180 \ \mathrm{MeV}/c \\ 800 \ \mathrm{MeV}/c \end{array}$
M G E X Y	All- θ MIP energy All- θ intermediate energy All- θ high energy Forward endcap MIP Backward barrel high energy	TPB TPB TPB TPB TPB	20 20 20 20 10	100 MeV 250 MeV 700 MeV 100 MeV 1 GeV

Table 17

Level 1 Trigger efficiencies (%) and rates (Hz) at a luminosity of $2.2 \times 10^{33} \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$ for selected triggers applied to various physics processes. The symbols refer to the counts for each object.

Level 1 Trigger	$\varepsilon_{B\overline{B}}$	$\varepsilon_{B \to \pi^0 \pi^0}$	$\varepsilon_{B \to \tau \overline{\nu}}$	$\varepsilon_{c\overline{c}}$	ε_{uds}	ε_{ee}	$\varepsilon_{\mu\mu}$	$\varepsilon_{ au au}$	Rate
A \geq 3 & B* \geq 1	97.1	66.4	81.8	88.9	81.1			17.7	180
A ≥ 1 & B* ≥ 1 & A' ≥ 1	95.0	63.0	83.2	89.2	85.2	98.6	99.1	79.9	410
Combined DCT (ORed)	99.1	79.7	92.2	95.3	90.6	98.9	99.1	80.6	560
$M{\geq}3 \ \& \ M^* \geq 1$	99.7	98.6	93.7	98.5	94.7			53.7	160
$\mathrm{EM}^* \geq 1$	71.4	94.9	55.5	77.1	79.5	97.8		65.8	150
Combined EMT (ORed)	99.8	99.2	95.5	98.8	95.6	99.2		77.6	340
B \geq 3 & A \geq 2 & M \geq 2	99.4	81.2	90.3	94.8	87.8			19.7	170
$\mathbf{M^*} \geq 1 \ \& \ \mathbf{A} \geq 1 \ \& \ \mathbf{A'} \geq 1$	95.1	68.8	83.7	90.1	87.0	97.8	95.9	78.2	250
$E \ge 1 \& B \ge 2 \& A \ge 1$	72.1	92.4	60.2	77.7	79.2	99.3		72.8	140
M* $\geq\!\!1$ & U $\geq\!\!5~(\mu\text{-pair})$							60.3		70
Combined Level 1 triggers	>99.9	99.8	99.7	99.9	98.2	>99.9	99.6	94.5	970

Eugenio Paoloni